Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Design of T-cell receptor libraries with diverse binding properties to examine adoptive T-cell responses

Abstract

Adoptive T-cell therapies have shown significant promise in the treatment of cancer and viral diseases. One approach, which introduces antigen-specific T-cell receptors (TCRs) into ex vivo activated T cells, is designed to overcome central tolerance mechanisms that prevent responses by endogenous T-cell repertoires. Studies have suggested that use of higher-affinity TCRs against class I major histocompatibility complex antigens could drive the activity of both CD4+ and CD8+ T cells, but the rules that govern the TCR binding optimal for in vivo activity are unknown. Here, we describe a high-throughput platform of ‘reverse biochemistry’ whereby a library of TCRs with a wide range of binding properties to the same antigen is introduced into T cells and adoptively transferred into mice with antigen-positive tumors. Extraction of RNA from tumor-infiltrating lymphocytes (TILs) or lymphoid organs allowed high-throughput sequencing to determine which TCRs were selected in vivo. The results showed that CD8+ T cells expressing the highest-affinity TCR variants were deleted in both the TIL population and in peripheral lymphoid tissues. In contrast, these same high-affinity TCR variants were preferentially expressed within CD4+ T cells in the tumor, suggesting they had a role in antigen-specific tumor control. The findings thus revealed that the affinity of the transduced TCRs controlled the survival and tumor infiltration of the transferred T cells. Accordingly, the TCR library strategy enables rapid assessment of TCR-binding properties that promote peripheral T-cell survival and tumor elimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rudolph MG, Stanfield RL, Wilson IA . How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 2006; 24: 419–466.

    Article  CAS  Google Scholar 

  2. Garcia KC, Adams JJ, Feng D, Ely LK . The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol 2009; 10: 143–147.

    Article  CAS  Google Scholar 

  3. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW . Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol 2008; 26: 171–203.

    Article  CAS  Google Scholar 

  4. Gras S, Kjer-Nielsen L, Burrows SR, McCluskey J, Rossjohn J . T-cell receptor bias and immunity. Curr Opin Immunol 2008; 20: 119–125.

    Article  CAS  Google Scholar 

  5. Dudley ME, Rosenberg SA . Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 2003; 3: 666–675.

    Article  CAS  Google Scholar 

  6. Gattinoni L, Powell DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    Article  CAS  Google Scholar 

  7. Schmitt TM, Ragnarsson GB, Greenberg PD . T cell receptor gene therapy for cancer. Hum Gene Ther 2009; 20: 1240–1248.

    Article  CAS  Google Scholar 

  8. Bendle GM, Haanen JB, Schumacher TN . Preclinical development of T cell receptor gene therapy. Curr Opin Immunol 2009; 21: 209–214.

    Article  CAS  Google Scholar 

  9. Schumacher TN, Restifo NP . Adoptive T cell therapy of cancer. Curr Opin Immunol 2009; 21: 187–189.

    Article  CAS  Google Scholar 

  10. Schepers K, Swart E, van Heijst JW, Gerlach C, Castrucci M, Sie D et al. Dissecting T cell lineage relationships by cellular barcoding. J Exp Med 2008; 205: 2309–2318.

    Article  CAS  Google Scholar 

  11. Gerlach C, van Heijst JW, Swart E, Sie D, Armstrong N, Kerkhoven RM et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J Exp Med 2010; 207: 1235–1246.

    Article  CAS  Google Scholar 

  12. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  Google Scholar 

  13. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114: 535–546.

    Article  CAS  Google Scholar 

  14. Rosenberg SA . Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor-transduced autologous T cells. Mol Ther 2010; 18: 1744–1745.

    Article  CAS  Google Scholar 

  15. Chen J, Eisen HN, Kranz DM . A model T-cell receptor system for studying memory T-cell development. Microbes Infect 2003; 5: 233–240.

    Article  CAS  Google Scholar 

  16. Udaka K, Wiesmuller K, Kienle S, Jung G, Walden P . Self-MHC-restricted peptides recognized by an alloreactive T-lymphocyte clone. J Immunol 1996; 157: 670–678.

    CAS  PubMed  Google Scholar 

  17. Holler PD, Chlewicki LK, Kranz DM . TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol 2003; 4: 55–62.

    Article  CAS  Google Scholar 

  18. Chervin AS, Stone JD, Holler PD, Bai A, Chen J, Eisen HN et al. The impact of TCR-binding properties and antigen presentation format on T cell responsiveness. J Immunol 2009; 183: 1166–1178.

    Article  CAS  Google Scholar 

  19. Manning TC, Schlueter CJ, Brodnicki TC, Parke EA, Speir JA, Garcia KC et al. Alanine scanning mutagenesis of an alphabeta T cell receptor: mapping the energy of antigen recognition. Immunity 1998; 8: 413–425.

    Article  CAS  Google Scholar 

  20. Lee PU, Churchill HR, Daniels M, Jameson SC, Kranz DM . Role of 2C T cell receptor residues in the binding of self- and allo- major histocompatibility complexes. J Exp Med 2000; 191: 1355–1364.

    Article  CAS  Google Scholar 

  21. Tallquist MD, Yun TJ, Pease LR . A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J Exp Med 1996; 184: 1017–1026.

    Article  CAS  Google Scholar 

  22. Garcia KC, Tallquist MD, Pease LR, Brunmark A, Scott CA, Degano M et al. Alphabeta T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc Natl Acad Sci USA 1997; 94: 13838–13843.

    Article  CAS  Google Scholar 

  23. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 1996; 274: 209–219.

    Article  CAS  Google Scholar 

  24. Santori FR, Kieper WC, Brown SM, Lu Y, Neubert TA, Johnson KL et al. Rare, structurally homologous self-peptides promote thymocyte positive selection. Immunity 2002; 17: 131–142.

    Article  CAS  Google Scholar 

  25. Holler PD, Kranz DM . Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 2003; 18: 255–264.

    Article  CAS  Google Scholar 

  26. Degano M, Garcia KC, Apostolopoulos V, Rudolph MG, Teyton L, Wilson IA . A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 2000; 12: 251–261.

    Article  CAS  Google Scholar 

  27. Kessels HW, van Den Boom MD, Spits H, Hooijberg E, Schumacher TN . Changing T cell specificity by retroviral T cell receptor display. Proc Natl Acad Sci USA 2000; 97: 14578–14583.

    Article  CAS  Google Scholar 

  28. Chervin AS, Aggen DH, Raseman JM, Kranz DM . Engineering higher affinity T cell receptors using a T cell display system. J Immunol Methods 2008; 339: 175–184.

    Article  CAS  Google Scholar 

  29. Engels B, Noessner E, Frankenberger B, Blankenstein T, Schendel DJ, Uckert W . Redirecting human T lymphocytes toward renal cell carcinoma specificity by retroviral transfer of T cell receptor genes. Hum Gene Ther 2005; 16: 799–810.

    Article  CAS  Google Scholar 

  30. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C . Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2: 435–445.

    Article  CAS  Google Scholar 

  31. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007; 109: 2331–2338.

    Article  CAS  Google Scholar 

  32. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA . Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007; 67: 3898–3903.

    Article  CAS  Google Scholar 

  33. Engels B, Chervin AS, Sant AJ, Kranz DM, Schreiber H . Long-term persistence of CD4(+) but rapid disappearance of CD8(+) T cells expressing an MHC class I-restricted TCR of nanomolar affinity. Mol Ther 2012; 20: 652–660.

    Article  CAS  Google Scholar 

  34. Daniels MA, Jameson SC . Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 2000; 191: 335–346.

    Article  CAS  Google Scholar 

  35. Cho BK, Lian KC, Lee P, Brunmark A, McKinley C, Chen J et al. Differences in antigen recognition and cytolytic activity of CD8(+) and CD8(-) T cells that express the same antigen-specific receptor. Proc Natl Acad Sci USA 2001; 98: 1723–1727.

    Article  CAS  Google Scholar 

  36. Spiotto MT, Rowley DA, Schreiber H . Bystander elimination of antigen loss variants in established tumors. Nat Med 2004; 10: 294–298.

    Article  CAS  Google Scholar 

  37. Cheung AF, Dupage MJ, Dong HK, Chen J, Jacks T . Regulated expression of a tumor-associated antigen reveals multiple levels of T-cell tolerance in a mouse model of lung cancer. Cancer Res 2008; 68: 9459–9468.

    Article  CAS  Google Scholar 

  38. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 2004; 64: 1140–1145.

    Article  CAS  Google Scholar 

  39. Koya RC, Mok S, Comin-Anduix B, Chodon T, Radu CG, Nishimura MI et al. Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses. Proc Natl Acad Sci USA 2010; 107: 14286–14291.

    Article  CAS  Google Scholar 

  40. Thomas DL, Kim M, Bowerman NA, Narayanan S, Kranz DM, Schreiber H et al. Recurrence of intracranial tumors following adoptive T cell therapy can be prevented by direct and indirect killing aided by high levels of tumor antigen cross-presented on stromal cells. J Immunol 2009; 183: 1828–1837.

    Article  CAS  Google Scholar 

  41. Ge Q, Hu H, Eisen HN, Chen J . Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proc Natl Acad Sci USA 2002; 99: 2989–2994.

    Article  CAS  Google Scholar 

  42. Surh CD, Sprent J . Homeostasis of naive and memory T cells. Immunity 2008; 29: 848–862.

    Article  CAS  Google Scholar 

  43. Bowerman NA, Crofts TS, Chlewicki L, Do P, Baker BM, Christopher Garcia K et al. Engineering the binding properties of the T cell receptor:peptide:MHC ternary complex that governs T cell activity. Mol Immunol 2009; 46: 3000–3008.

    Article  CAS  Google Scholar 

  44. Corse E, Gottschalk RA, Krogsgaard M, Allison JP . Attenuated T cell responses to a high-potency ligand in vivo. PLoS Biol 2010; 8: pii: e1000481.

    Article  Google Scholar 

  45. Ghani S, Feuerer M, Doebis C, Lauer U, Loddenkemper C, Huehn J et al. T cells as pioneers: antigen-specific T cells condition inflamed sites for high-rate antigen-non-specific effector cell recruitment. Immunology 2009; 128: e870–e880.

    Article  Google Scholar 

  46. Palmer DC, Balasubramaniam S, Hanada K, Wrzesinski C, Yu Z, Farid S et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J Immunol 2004; 173: 7209–7216.

    Article  CAS  Google Scholar 

  47. Charo J, Perez C, Buschow C, Jukica A, Czeh M, Blankenstein T . Visualizing the dynamic of adoptively transferred T cells during the rejection of large established tumors. Eur J Immunol 2011; 41: 3187–3197.

    Article  CAS  Google Scholar 

  48. Scott-Browne JP, White J, Kappler JW, Gapin L, Marrack P . Germline-encoded amino acids in the alphabeta T-cell receptor control thymic selection. Nature 2009; 458: 1043–1046.

    Article  CAS  Google Scholar 

  49. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007; 27: 985–997.

    Article  CAS  Google Scholar 

  50. Gottschalk RA, Corse E, Allison JP . TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med 2010; 207: 1701–1711.

    Article  CAS  Google Scholar 

  51. Li Y, Moysey R, Molloy PE, Vuidepot AL, Mahon T, Baston E et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 2005; 23: 349–354.

    Article  CAS  Google Scholar 

  52. Aggen DH, Chervin AS, Insaidoo FK, Piepenbrink KH, Baker BM, Kranz DM . Identification and engineering of human variable regions that allow expression of stable single-chain T cell receptors. Protein Eng Des Sel 2011; 24: 361–372.

    Article  CAS  Google Scholar 

  53. Li LP, Lampert JC, Chen X, Leitao C, Popovic J, Muller W et al. Transgenic mice with a diverse human T cell antigen receptor repertoire. Nat Med 2010; 16: 1029–1034.

    Article  CAS  Google Scholar 

  54. Eshhar Z, Waks T, Gross G, Schindler DG . Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90: 720–724.

    Article  CAS  Google Scholar 

  55. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  Google Scholar 

  56. Engels B, Cam H, Schuler T, Indraccolo S, Gladow M, Baum C et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 2003; 14: 1155–1168.

    Article  CAS  Google Scholar 

  57. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy 2000; 7: 1063–1066.

    Article  CAS  Google Scholar 

  58. Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF et al. Increasing tumor antigen expression overcomes ‘ignorance’ to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 2002; 17: 737–747.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Janie Frye for her assistance with RNA isolation, Tom Gajewski for his gift of B16-SIY, Barbara Pilas and Ben Montez in the University of Illinois Flow Cytometry Facility for assistance with in vitro cell sorting, and Alvaro Hernandez and Chris Wright at the University of Illinois High-Throughput Sequencing and Genotyping Unit for assistance with 454 sequence analysis. This work was supported by NIH grant CA097296 (to DMK and HS) and a grant from the Melanoma Research Alliance (to DMK). BE was supported by a Research Fellowship of the DFG; JDS was supported by the Samuel and Ruth Engelberg/Irvington Institute Fellowship of the Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Kranz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chervin, A., Stone, J., Soto, C. et al. Design of T-cell receptor libraries with diverse binding properties to examine adoptive T-cell responses. Gene Ther 20, 634–644 (2013). https://doi.org/10.1038/gt.2012.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.80

Keywords

This article is cited by

Search

Quick links