Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes

Abstract

The major histocompatibility complex class II transactivator (CIITA) gene (16p13) has been reported to associate with susceptibility to multiple sclerosis, rheumatoid arthritis and myocardial infarction, recently also to celiac disease at genome-wide level. However, attempts to replicate association have been inconclusive. Previously, we have observed linkage to the CIITA region in Scandinavian type 1 diabetes (T1D) families. Here we analyze five Swedish T1D cohorts and a combined control material from previous studies of CIITA. We investigate how the genotype distribution within the CIITA gene varies depending on age, and the association to T1D. Unexpectedly, we find a significant difference in the genotype distribution for markers in CIITA (rs11074932, P=4 × 10−5 and rs3087456, P=0.05) with respect to age, in the collected control material. This observation is replicated in an independent cohort material of about 2000 individuals (P=0.006, P=0.007). We also detect association to T1D for both markers, rs11074932 (P=0.004) and rs3087456 (P=0.001), after adjusting for age at sampling. The association remains independent of the adjacent T1D risk gene CLEC16A. Our results indicate an age-dependent variation in CIITA allele frequencies, a finding of relevance for the contrasting outcomes of previously published association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Todd JA . Genetic analysis of type 1 diabetes using whole genome approaches. Proc Natl Acad Sci USA 1995; 92: 8560–8565.

    Article  CAS  Google Scholar 

  2. Kockum I, Sanjeevi CB, Eastman S, Landin-Olsson M, Dahlquist G, Lernmark A . Complex interaction between HLA DR and DQ in conferring risk for childhood type 1 diabetes. Eur J Immunogenet 1999; 26: 361–372.

    Article  CAS  Google Scholar 

  3. Graham J, Kockum I, Sanjeevi CB, Landin-Olsson M, Nystrom L, Sundkvist G et al. Negative association between type 1 diabetes and HLA DQB1*0602-DQA1*0102 is attenuated with age at onset. Swedish Childhood Diabetes Study Group. Eur J Immunogenet 1999; 26: 117–127.

    Article  CAS  Google Scholar 

  4. Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W . CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000; 14: 1156–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou H, Glimcher LH . Human MHC class II gene transcription directed by the carboxyl terminus of CIITA, one of the defective genes in type II MHC combined immune deficiency. Immunity 1995; 2: 545–553.

    Article  CAS  Google Scholar 

  6. Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B . Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 1994; 265: 106–109.

    Article  CAS  Google Scholar 

  7. Klein C, Lisowska-Grospierre B, LeDeist F, Fischer A, Griscelli C . Major histocompatibility complex class II deficiency: clinical manifestations, immunologic features, and outcome. J Pediatr 1993; 123: 921–928.

    Article  CAS  Google Scholar 

  8. Muhlethaler-Mottet A, Otten LA, Steimle V, Mach B . Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J 1997; 16: 2851–2860.

    Article  CAS  Google Scholar 

  9. LeibundGut-Landmann S, Waldburger JM, Reis e Sousa C, Acha-Orbea H, Reith W . MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat Immunol 2004; 5: 899–908.

    Article  CAS  Google Scholar 

  10. Sartoris S, Brendolan A, Degola A, Testi MG, Chignola R, Scarpa A et al. Analysis of CIITA encoding AIR-1 gene promoters in insulin-dependent diabetes mellitus and rheumatoid arthritis patients from the northeast of Italy: absence of sequence variability. Hum Immunol 2000; 61: 599–604.

    Article  CAS  Google Scholar 

  11. Nerup J, Pociot F . A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Genet 2001; 69: 1301–1313.

    Article  CAS  Google Scholar 

  12. Caillat-Zucman S, Garchon HJ, Timsit J, Assan R, Boitard C, Djilali-Saiah I et al. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest 1992; 90: 2242–2250.

    Article  CAS  Google Scholar 

  13. Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 2002; 51: 1346–1355.

    Article  CAS  Google Scholar 

  14. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011; 43: 1193–1201.

    Article  CAS  Google Scholar 

  15. Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 2005; 37: 486–494.

    Article  CAS  Google Scholar 

  16. Jensen RA, Gilliam LK, Torn C, Landin-Olsson M, Karlsson FA, Palmer JP et al. Multiple factors affect the loss of measurable C-peptide over 6 years in newly diagnosed 15- to 35-year-old diabetic subjects. J Diabetes Complications 2007; 21: 205–213.

    Article  Google Scholar 

  17. Consortium WTCC. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  18. Bronson PG, Caillier S, Ramsay PP, McCauley JL, Zuvich RL, De Jager PL et al. CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. Hum Mol Genet 2010; 19: 2331–2340.

    Article  CAS  Google Scholar 

  19. Iikuni N, Ikari K, Momohara S, Tomatsu T, Hara M, Yamanaka H et al. MHC2TA is associated with rheumatoid arthritis in Japanese patients. Ann Rheum Dis 2007; 66: 274–275.

    Article  CAS  Google Scholar 

  20. Martinez A, Sanchez-Lopez M, Varade J, Mas A, Martin MC, de Las Heras V et al. Role of the MHC2TA gene in autoimmune diseases. Ann Rheum Dis 2007; 66: 325–329.

    Article  CAS  Google Scholar 

  21. Cooper JD, Walker NM, Smyth DJ, Downes K, Healy BC, Todd JA . Follow-up of 1715 SNPs from the Wellcome Trust Case Control Consortium genome-wide association study in type I diabetes families. Genes Immun 2009; 10 (Suppl 1): S85–S94.

    Article  Google Scholar 

  22. Larsen CE, Alper CA . The genetics of HLA-associated disease. Curr Opin Immunol 2004; 16: 660–667.

    Article  CAS  Google Scholar 

  23. Eyre S, Bowes J, Spreckley K, Potter C, Ring S, Strachan D et al. Investigation of the MHC2TA gene, associated with rheumatoid arthritis in a Swedish population, in a UK rheumatoid arthritis cohort. Arthritis Rheum 2006; 54: 3417–3422.

    Article  CAS  Google Scholar 

  24. Harrison P, Pointon JJ, Farrar C, Harin A, Wordsworth BP . MHC2TA promoter polymorphism (-168*G/A, rs3087456) is not associated with susceptibility to rheumatoid arthritis in British Caucasian rheumatoid arthritis patients. Rheumatology (Oxford) 2007; 46: 409–411.

    Article  CAS  Google Scholar 

  25. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857–864.

    Article  CAS  Google Scholar 

  26. Landin-Olsson M, Karlsson FA, Lernmark A, Sundkvist G . Islet cell and thyrogastric antibodies in 633 consecutive 15- to 34-yr-old patients in the diabetes incidence study in Sweden. Diabetes 1992; 41: 1022–1027.

    Article  CAS  Google Scholar 

  27. Dahlquist G, Blom L, Tuvemo T, Nystrom L, Sandstrom A, Wall S . The Swedish childhood diabetes study—results from a nine year case register and a one year case-referent study indicating that type 1 (insulin-dependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia 1989; 32: 2–6.

    Article  CAS  Google Scholar 

  28. Carlsson A, Kockum I, Lindblad B, Engleson L, Nilsson A, Forsander G et al. Low risk HLA-DQ and increased body mass index in newly diagnosed type 1 diabetes children in the Better Diabetes Diagnosis study in Sweden. Int J Obes (Lond) 2012; 36: 718–724.

    Article  CAS  Google Scholar 

  29. Lindholm E, Agardh E, Tuomi T, Groop L, Agardh CD . Classifying diabetes according to the new WHO clinical stages. Eur J Epidemiol 2001; 17: 983–989.

    Article  CAS  Google Scholar 

  30. Stolt P, Bengtsson C, Nordmark B, Lindblad S, Lundberg I, Klareskog L et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis 2003; 62: 835–841.

    Article  CAS  Google Scholar 

  31. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 2007; 357: 1199–1209.

    Article  CAS  Google Scholar 

  32. Roos IM, Kockum I, Hillert J . The interleukin 23 receptor gene in multiple sclerosis: a case-control study. J Neuroimmunol 2008; 194: 173–180.

    Article  CAS  Google Scholar 

  33. Hedstrom AK, Baarnhielm M, Olsson T, Alfredsson L . Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 2009; 73: 696–701.

    Article  Google Scholar 

  34. Bjork BF, Katzov H, Kehoe P, Fratiglioni L, Winblad B, Prince JA et al. Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiol Aging 2007; 28: 1374–1380.

    Article  Google Scholar 

  35. McGuigan FE, Larzenius E, Callreus M, Gerdhem P, Luthman H, Akesson K . Variation in the BMP2 gene: bone mineral density and ultrasound in young adult and elderly women. Calcif Tissue Int 2007; 81: 254–262.

    Article  CAS  Google Scholar 

  36. Gerdhem P, Isaksson A, Akesson K, Obrant KJ . Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 2005; 16: 1506–1512.

    Article  CAS  Google Scholar 

  37. Ekelund E, Saaf A, Tengvall-Linder M, Melen E, Link J, Barker J et al. Elevated expression and genetic association links the SOCS3 gene to atopic dermatitis. Am J Hum Genet 2006; 78: 1060–1065.

    Article  CAS  Google Scholar 

  38. Prince JA, Feuk L, Howell WM, Jobs M, Emahazion T, Blennow K et al. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation. Genome Res 2001; 11: 152–162.

    Article  CAS  Google Scholar 

  39. Roach JC, Deutsch K, Li S, Siegel AF, Bekris LM, Einhaus DC et al. Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in sweden. Am J Hum Genet 2006; 79: 614–627.

    Article  CAS  Google Scholar 

  40. Olerup O, Zetterquist H . HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 h: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigen 1992; 39: 225–235.

    Article  CAS  Google Scholar 

  41. Kiviniemi M, Hermann R, Nurmi J, Ziegler AG, Knip M, Simell O et al. A high-throughput population screening system for the estimation of genetic risk for type 1 diabetes: an application for the TEDDY (the Environmental Determinants of Diabetes in the Young) study. Diabetes Technol Ther 2007; 9: 460–472.

    Article  CAS  Google Scholar 

  42. Zhang K, Deng M, Chen T, Waterman MS, Sun F . A dynamic programming algorithm for haplotype block partitioning. Proc Natl Acad Sci USA 2002; 99: 7335–7339.

    Article  CAS  Google Scholar 

  43. Zhang K, Jin L . HaploBlockFinder: haplotype block analyses. Bioinformatics 2003; 19: 1300–1301.

    Article  CAS  Google Scholar 

  44. Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F . Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies. Genome Res 2004; 14: 908–916.

    Article  CAS  Google Scholar 

  45. Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A . Calculating measures of biological interaction. Eur J Epidemiol 2005; 20: 575–579.

    Article  Google Scholar 

  46. Knol MJ, VanderWeele TJ . Recoding preventive exposures to get valid measures of interaction on an additive scale. Eur J Epidemiol 2011; 26: 825–826.

    Article  Google Scholar 

  47. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2008.

  48. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66: 87–98.

    Article  Google Scholar 

  49. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jana L Hoehna and Marta Janer for their contribution to this work. We acknowledge Professor Laura Fratiglioni and coworkers in the SNACK project for the SNACK controls and Dr Behnosh F Björk for the sample handling. This work was supported by grants from the Juvenile Diabetes Research Foundation International (2-2000-570) and (1-2001-873), the Swedish Research Council, Swedish Diabetes Foundation (Svenska Diabetes Fonden), Swedish Child Diabetes Foundation (Barndiabetes Fonden), Novo Nordisk Foundation, Magnus Bergvalls Foundation and Neuropromise (LSHM-CT-2005-018637). The Molecular and Genetics Core of the Diabetes Endocrinology Research Center is supported by NIH grant DK-17047. The project was also supported by the Swedish Brain Power initiative, Gun and Bertil Stohne’s Foundation, Foundation for Old Servants, Alzheimer Foundation and LIONS Foundation for Research of Age Related Disorders, the AFA foundation, the Söderberg Foundation, Knut and Alice Wallenbergs Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A Gyllenberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyllenberg, A., Asad, S., Piehl, F. et al. Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes. Genes Immun 13, 632–640 (2012). https://doi.org/10.1038/gene.2012.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.44

Keywords

This article is cited by

Search

Quick links