Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vanadium partitioning and the oxidation state of Archaean komatiite magmas

Abstract

The MgO content of komatiite lavas is an important measure of their formation temperature deep in the Archaean mantle, and forms the basis for models of the early Earth's thermal and chemical evolution1,2,3,4,5. Estimates of the primary MgO content of komatiites are sensitive to the oxidation state—characterized by the oxygen fugacity ( f O 2 )—assumed for the magmas during their crystallization. Despite two decades of study, however, f O 2 is still poorly constrained for these lavas. Here I present an estimate of the f O 2 for komatiite flows, based on the systematics of vanadium partitioning between komatiitic liquid and olivine in six well-characterized komatiite flows of varying ages. This approach shows that the oxidation state of several of these Archaean lava flows was the same as, or possibly more oxidizing than, that of present-day oceanic basalts. These results may require a downward revision of the mantle melting temperature estimated for many komatiites by about 50 °C, and suggest that the mantle was unlikely to be much less oxidized during the Archaean era than at present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of DVol/liq with f O 2 (expressed relative to the nickel–nickel oxide oxygen buffer at the temperature of interest (ΔNNO)) for experiments over a range of temperatures.
Figure 2: Covariation of V and Ti, Zr, Sc, Yb abundances in six well-characterized komatiite flows.

Similar content being viewed by others

References

  1. Viljoen, M. J. & Viljoen, R. P. Evidence for the existence of a mobile extrusive peridotitic magma from the Komati Formation of the Onverwacht Group. Geol. Soc. S. Afr. Spec. Publ. 3, 87–112 (1969).

    Google Scholar 

  2. Arndt, N. T. & Nisbet, E. G. (eds) Komatiites(Allen and Unwin, London, (1982)).

    Google Scholar 

  3. Green, D. H., Nicholls, R. A., Viljoen, M. J. & Viljoen, R. P. Experimental determination of the existence of peridotic liquids in earliest Archean magmatism. Geology 3, 15–18 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Nisbet, E. G., Cheadle, M. J., Arndt, N. T. & Bickle, M. J. Constraining the potential temperature of the Archean mantle: a review of the evidence from komatiites. Lithos 30, 291–307 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. 97, 4521–4540 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol 106, 129–141 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kilinc, A., Carmichael, I. S. E., Rivers, M. L. & Sack, R. O. Ferric–ferrous ratio of natural silicate liquids equilibrated in air. Contrib. Mineral. Petrol. 83, 136–140 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Beswick, A. E. in Komatiites 283–308 (Allen and Unwin, London, (1982)).

    Google Scholar 

  9. Smith, H. S. & Erlank, A. in Komatiites 347–397 (Allen and Unwin, London, (1982)).

    Google Scholar 

  10. Carmichael, I. S. E. & Ghiorso, M. S. Controls on oxidation–reduction relations in magmas. Rev. Mineral., Miner. Soc. Am. 24, 191–212 (1990).

    CAS  Google Scholar 

  11. Hanson, B. Z., Jones, J. H. & Gaetani, G. A. Partition coefficients for Cr2+ and Cr3+ between olivine and liquid are virtually identical: Cr and V partitioning among olivine, spinel and silicate liquid over a wide range of fO2's. EOS Trans. Am. Geophys. Un. 77, 846 (1996).

    Google Scholar 

  12. Rammensee, W., Palme, H. & Wänke, H. Experimental investigation of metal-silicate partioning of some lithophile elements (Ta, Mn, V, Cr). Lunar. Planet. Sci. XIV, 628–629 (1983).

    ADS  Google Scholar 

  13. Arndt, N. T. Differentiation of komatiite flows. J. Petrol 27, 279–302 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Thy, P. Low pressure experimental constraints on the evolution of komatiites. J. Petrol 36, 1529–1548 (1995).

    CAS  Google Scholar 

  15. Cattell, A. & Arndt, N. Low- and high-alumina komatiites from a late Archaean sequence, Newton Township, Ontario. Contrib. Mineral. Petrol. 97, 218–227 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Green, T. H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem. Geol. 117, 1–36 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Lahaye, Y. et al. The influence of alteration on the trace element and Nd isotopic compositions of komatiites. Chem. Geol. 126, 43–64 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Horn, I., Foley, S. F., Jackson, S. E. & Jenner, G. A. Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melts. Chem. Geol. 117, 194–218 (1994).

    Article  ADS  Google Scholar 

  19. McDonough, W. F. & Ireland, T. R. Intraplate origin of komatiites inferred from trace elements in glass inclusions. Nature 365, 432–434 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Oxidation states of mid-ocean ridge basalt glasses. Earth Planet. Sci. Lett. 79, 397–411 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Eggler, D. H. & Lorand, J. P. Sulfides, diamonds and mantle fO2. Proc. 5th Int. Kimb. Conf. 160–169 (CPRM Brasilia, Brasilia, (1994).

  23. Takahashi, E. Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. J. Geophys. Res. 95, 15941–15954 (1990).

    Article  ADS  Google Scholar 

  24. Nisbet, E. G. et al. Unique fresh 2.7 Ga komatiites from the Belingwe greenstone belt, Zimbabwe. Geology 15, 1147–1150 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Viljoen, M. J., Viljoen, R. P., Smith, H. S. & Erlank, A. J. Geological, textural and geochemical features of komatiitic flows from the Komati Formation. Spec. Publ. Geol. Soc. S. Afr. 9, 1–20 (1983).

    Google Scholar 

  26. Smith, H. S., Erlank, A. J. & Duncan, A. R. Geochemistry of some ultramafic komatiite flows from the Barberton Mountain Land, South Africa. Precamb. Res. 11, 399–415 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Arndt, N. T. & Lesher, C. M. Fractionation of REEs by olivine and the origin of Kambalda komatiites, Western Australia. Geochim. Cosmochim. Acta 56, 419–4204 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by research and equipment grants from NSERC of Canada. This paper benefited from reviews by H. Palme and N. Arndt, and from the encouragement of C.Fischer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Canil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997). https://doi.org/10.1038/39860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39860

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing