Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular genetics of cranial nerve development in mouse

Key Points

  • Development of more than 1,000 distinct neuronal subtypes in the mammalian central nervous system is governed by distinct genetic codes. The vertebrate hindbrain provides an attractive model for understanding these neuronal codes. The cranial motor nerves and sensory ganglia are formed in a stereotypical manner, and each has a unique appearance and targets specific tissues.

  • In the adult brainstem, the anatomical organization of the cranial nerves reflects their embryonic origins. The three motor neuron subtypes and the components of the sensory ganglia can be characterized by the positions of their cell bodies, axonal trajectories and gene expression patterns.

  • Patterning of the hindbrain and cranial nerves occurs sequentially. Initially, cells are compartmentalized along the anteroposterior axis into seven or eight segments, known as rhombomeres. These provide anteroposterior positional information, and cell–cell interactions and dorsoventral signals within each rhombomere promote neuronal differentiation.

  • Genes involved in early hindbrain patterning, particularly those required for the establishment and maintenance of rhombomeres, are essential for the formation of cranial nerves. In 1964, Deol described abnormal hindbrain segmentation and cranial nerve defects caused by the mouse kreisler mutation. Our understanding of the genetic requirements for rhombomere and early cranial nerve development was advanced by the discovery that Hox gene expression respects rhombomere boundaries, and by the advent of targeted mutagenesis.

  • The anteroposterior information provided by rhombomeres is integrated with dorsoventral positional signals provided by sonic hedgehog, which is emitted by the ventrally located floorplate, and signals from the dorsal roofplate.

  • Variations in Hox gene levels might reflect and be involved in the integration of anteroposterior and dorsoventral positional values. Each Hox gene might show not only a unique rhombomere-specific expression pattern, but might also be expressed in a specific neuronal class.

  • Do neural determinants induced along the dorsoventral axis act in subtype-specific programmes or in general neuronal differentiation programs? Inactivation or ectopic expression of factors such as Nkx2.2, Pax6, Lhx2 and Lhx4 causes fate switches, suggesting that they act in subtype-specific differentiation. Analyses of Lim homeodomain proteins support the concept of a subtype-specific code, in this case to define early motor neuron identity.

  • As neuronal cell bodies migrate to their final resting site and undergo maturation, some determinants are expressed transiently or in response to environmental signals. The dynamic interpretation of location-specific information is illustrated by mouse mutations that affect development of the facial branchiomotor nucleus.

  • The molecular mechanisms underlying the specification of sensory, sympathetic and parasympathetic neuronal subtypes in the cranial ganglia are beginning to be elucidated.

  • In addition to the neurons that comprise the cranial motor nerves, the hindbrain gives rise to a complex neuronal circuitry that governs rhythmic activities, such as breathing. This is known as the central respiratory centre.

  • 5-Hydroxytryptamine (5-HT, serotonin)-containing neurons coordinate an animal's assessment of its internal and emotional state, and its response to its environment. Most of these neurons are born in two clusters in the ventral portion of the hindbrain, and are later organized into the nine raphe nuclei.

  • As hindbrain neurons mature, their axons initially extend towards their target by repulsion from specific rhombomeres and attraction towards the dorsal or ventral neural tube. The axons home in on their final destination by responding to highly specific cocktails of attractants, repellents and survival factors.

Abstract

Over the past decade, we have begun to understand the molecular genetics of cranial nerve development through the analysis of mouse mutants. Nerve identity is imparted by genes involved in anteroposterior patterning, such as the Hox genes, kreisler and Krox20. Neuronal determinants, including Lim homeobox genes, dictate neuronal subtype along the dorsoventral axis. Subsequent neuronal differentiation, and cell body and axon migration, is governed by subtype-specific gene expression, which is transient at times. So far, only a few cranial-axon-specific guidance molecules have been identified. The insights from these genetic analyses will help to guide future analyses of cranial nerve development in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the adult mouse hindbrain.
Figure 2: Organization of cranial motor nerves and ganglia in the mouse.
Figure 3: Genes involved in anteroposterior patterning of the hindbrain regulate motor neuron development.
Figure 4: Expression of neuronal determinants in the mouse hindbrain.
Figure 5: Development of the facial branchiomotor nucleus in mouse.

Similar content being viewed by others

References

  1. Bergstrom, L. & Baker, B. B. Syndromes associated with congenital facial paralysis. Otolaryngol. Head Neck Surg. 89, 336–342 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Clarke, J. D. & Lumsden, A. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118, 151–162 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Lumsden, A. & Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428 (1989).This paper describes elegant cell-labelling experiments that demonstrate the compartmental nature of rhombomeres.

    Article  CAS  PubMed  Google Scholar 

  4. Orr, X. Contribution to the embryology of the lizard. J. Morphol. 1, 311–372 (1887).

    Article  Google Scholar 

  5. Vaage, S. The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Adv. Anat. Embryol. Cell Biol. 41, 1–88 (1969).This is a classic text on rhombomere development.

    Google Scholar 

  6. Fritzsch, B. Of mice and genes: evolution of vertebrate brain development. Brain Behav. Evol. 52, 207–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Gilland, E. & Baker, R. Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat. (Basel) 148, 110–123 (1993).References 6 and 7 describe some phylogenetic differences in hindbrain patterning.

    Article  CAS  PubMed  Google Scholar 

  8. Jacob, J., Hacker, A. & Guthrie, S. Mechanisms and molecules in motor neuron specification and axon pathfinding. Bioessays 23, 582–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Guthrie, S. Patterning the hindbrain. Curr. Opin. Neurobiol. 6, 41–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Trainor, P. A. & Krumlauf, R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nature Rev. Neurosci. 1, 116–124 (2000).

    Article  CAS  Google Scholar 

  12. Graham, A. & Lumsden, A. Interactions between rhombomeres modulate Krox20 and follistatin expression in the chick embryo hindbrain. Development 122, 473–480 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Guthrie, S. & Lumsden, A. Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112, 221–229 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Deol, M. S. The abnormalities of the inner ear in kreisler mice. J. Embryol. Exp. Morphol. 12, 475–490 (1964).

    CAS  PubMed  Google Scholar 

  15. Hertwig, P. Neue Mutationen und Koppelungsgruppen bei der Hausmaus. Z. indukt. Abstamm. Vererbungsl. 80, 220–246 (1942).

    Google Scholar 

  16. Murphy, P., Davidson, D. R. & Hill, R. E. Segment-specific expression of a homeobox-containing gene in the mouse hindbrain. Nature 341, 156–159 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E. & Krumlauf, R. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Cappecchi, M. in Molecular Approaches to Neural Development (eds Cowan, W. M., Jessell, T. M. & Zipursky, S. L.) (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  19. Krumlauf, R. Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet. 9, 106–112 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Rossel, M. & Capecchi, M. R. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126, 5027–5040 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Barrow, J. R., Stadler, H. S. & Capecchi, M. R. Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127, 933–944 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter, E. M., Goddard, J. M., Chisaka, O., Manley, N. R. & Capecchi, M. R. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Frohman, M. A., Martin, G. R., Cordes, S. P., Halamek, L. P. & Barsh, G. S. Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117, 925–936 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. McKay, I. J. et al. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120, 2199–2211 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Manzanares, M. et al. The role of kreisler in segmentation during hindbrain development. Dev. Biol. 211, 220–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Cordes, S. P. & Barsh, G. S. The mouse segmentation gene kr encondes a novel basic domain–leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Wassarman, K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Ericson, J., Briscoe, J., Rashbass, P., Van Heyningen, V. & Jessell, T. M. Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb. Symp. Quant. Biol. 62, 451–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Liem, K. F. Jr, Tremml, G. & Jessell, T. M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Yamada, T., Pfaff, S. L., Edlund, T. & Jessell, T. M. Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73, 673–686 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Sander, M. et al. Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes Dev. 14, 2134–2139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Briscoe, J. et al. Homeobox gene Nkx2. 2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).References 34 and 35 describe the interpretation of the Shh signal by neuronal determinants.

    Article  CAS  PubMed  Google Scholar 

  36. Deol, M. S. The origin of the abnormalities of the inner ear in dreher mice. J. Embryol. Exp. Morphol. 12, 727–733 (1964).

    CAS  PubMed  Google Scholar 

  37. Millonig, J. H., Millen, K. J. & Hatten, M. E. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403, 764–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Manzanares, M., Trainor, P. A., Ariza-McNaughton, L., Nonchev, S. & Krumlauf, R. Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher (drJ) mouse mutant. Mech. Dev. 94, 147–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Davenne, M. et al. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22, 677–691 (1999).This study examines the integration of anteroposterior and dorsoventral positional information in Hox gene expression and neuronal specification. It examines the possible roles of Hox genes in the specification of motor neurons.

    Article  CAS  PubMed  Google Scholar 

  40. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Sharma, K. et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 (1998).An elegant series of transgenic and knockout experiments demonstrates that Lhx3 and Lhx4 Lim homeodomain proteins act as neuronal determinants and that a Lim homeodomain code might be of functional significance.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 935–943 (1994).

    Article  Google Scholar 

  43. Varela-Echavarria, A., Pfaff, S. L. & Guthrie, S. Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brainstem. Mol. Cell. Neurosci. 8, 242–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J. F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Pata, I. et al. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 126, 5523–5531 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F. Y. & Orkin, S. H. Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210, 305–321 (1999).Here, the GATA2 and GATA3 genes are found to act downstream of Hox genes in neuronal specification.

    Article  CAS  PubMed  Google Scholar 

  47. Studer, M. et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125, 1025–1036 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Garel, S., Garcia-Dominguez, M. & Charnay, P. Control of the migratory pathway of facial branchiomotor neurones. Development 127, 5297–5307 (2000).Here, the role of the basic helix–loop–helix transcription factor in the regulation of transient gene expression patterns and FBM neuron migration is examined, and a functional link between such expression and migratory patterns is suggested.

    Article  CAS  PubMed  Google Scholar 

  49. Ma, Q., Chen, Z. F., Del Barco Barrantes, I., De la Pompa, J. L. & Anderson, D. J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482 (1998).Identification of neurogenin 1 as one of the few known sensory neuron determinants.

    Article  CAS  PubMed  Google Scholar 

  50. Erickson, S. L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and heregulin-deficient mice. Development 124, 4999–5011 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–36 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fode, C. et al. The bHLH protein NEUROGENIN2 is determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494 (1998).Identification of neurogenin 2 as one of the few known sensory neuron determinants.

    Article  CAS  PubMed  Google Scholar 

  55. Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423 (1997).With reference 65 , one of a series of papers examining the intriguing role of Phox2a in mouse mutants.

    Article  CAS  PubMed  Google Scholar 

  56. Pattyn, A., Morin, X., Cremer,H., Goridis,C. & Brunet, J.-F. The homeobox gene Phox2b is essential for development of autonomic neural crest derivatives. Nature 399, 366–370 (1998).

    Article  Google Scholar 

  57. Pattyn, A., Goridis, C. & Brunet, J. F. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol. Cell. Neurosci. 15, 235–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Anderson, D. J. Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr. Opin. Neurobiol. 9, 517–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Howard, M. J., Stanke, M., Schneider, C., Wu, X. & Rohrer, H. The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127, 4073–4081 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Lo, L., Morin, X., Brunet, J. F. & Anderson, D. J. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 22, 693–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Guo, S. et al. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24, 555–566 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Stanke, M. et al. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126, 4087–4094 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet. 25, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Enomoto, H., Heuckeroth, R. O., Golden, J. P., Johnson, E. M. & Milbrandt, J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 127, 4877–4889 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Hiltunen, J. O., Laurikainen, A., Airaksinen, M. S. & Saarma, M. GDNF family receptors in the embryonic and postnatal rat heart and reduced cholinergic innervation in mice hearts lacking ret or GFRα2. Dev. Dyn. 219, 28–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Rossi, J. et al. Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFRα2, a functional neurturin receptor. Neuron 22, 243–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Cacalano, G. et al. GFRα1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21, 53–62 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garces, A. et al. GFRα1 is required for development of distinct subpopulations of motoneuron. J. Neurosci. 20, 4992–5000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).The first genetic evidence that GDNF acts as a survival factor for neurons.

    Article  CAS  PubMed  Google Scholar 

  72. Baloh, R. H. et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3–RET receptor complex. Neuron 21, 1291–1302 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Milbrandt, J. et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20, 245–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Champagnat, J. & Fortin, G. Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends Neurosci. 20, 119–124 (1997).This is a review that describes well the intricacies of the respiratory centre.

    Article  CAS  PubMed  Google Scholar 

  75. Amiel, J. et al. Mutations of the RET–GDNF signaling pathway in Ondine's curse. Am. J. Hum. Genet. 62, 715–717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bolk, S. et al. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Nature Genet. 13, 395–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Ramirez, J. M., Quellmalz, U. J. & Wilken, B. Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. J. Neurophysiol. 78, 383–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Jacquin, T. D. et al. Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17, 747–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Borday, V., Kato, F. & Champagnat, J. A ventral pontine pathway promotes rhythmic activity in the medulla of neonate mice. Neuroreport 8, 3679–3683 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Jacquin, T. D., Sadoc, G., Borday, V. & Champagnat, J. Pontine and medullary control of the respiratory activity in the trigeminal and facial nerves of the newborn mouse: an in vitro study. Eur. J. Neurosci. 11, 213–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Shirasawa, S. et al. Rnx deficiency results in congenital central hypoventilation. Nature Genet. 24, 287–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Rocha, B. A. et al. Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393, 175–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Brennan, T. J., Seeley, W. W., Kilgard, M., Schreiner, C. E. & Tecott, L. H. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nature Genet. 16, 387–390 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Van Doorninck, J. H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12, 1–8 (1999).This is one of the few papers to examine 5-HT neuron differentiation by chimeric analyses.

    Article  CAS  PubMed  Google Scholar 

  85. Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Hynes, M. et al. The seven-transmembrane receptor smoothened cell-autonomously induces multiple ventral cell types. Nature Neurosci. 3, 41–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Galas, J. Sequence interpretation. Making sense of the sequence. Science 291, 1232–1249 (2001).

    Article  Google Scholar 

  90. Kitsukawa, T. et al. Neuropilin–semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995–1005 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, H. et al. Neuropilin-2 regulates the development of selective cranial and sensorynerves and hippocampal mossy fiber projections. Neuron 25, 43–56 (2000).

    Article  PubMed  Google Scholar 

  92. White, F. A. & Behar, O. The development and subsequent elimination of aberrant peripheral axon projections in Semaphorin3A null mutant mice. Dev. Biol. 225, 79–86 (2000).This work describes the ability of the defasciculation phenotype observed in E10.5 mutants to be self-corrected by E15 through unknown mechanisms.

    Article  CAS  PubMed  Google Scholar 

  93. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Kennedy, T. E., Serafini, T., De la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Colamarino, S. A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  102. Klein, R. Excitatory Eph receptors and adhesive ephrin ligands. Curr. Opin. Cell Biol. 13, 196–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Holland, S. J., Peles, E., Pawson, T. & Schlessinger, J. Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase β. Curr. Opin. Neurobiol. 8, 117–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).Here, the aberrant routing of cranial ganglia is described, and the possibility that ErbB4 can act as a barrier molecule to axon migration presented.

    Article  CAS  PubMed  Google Scholar 

  105. Jacob, J., Tiveron, M. C., Brunet, J. F. & Guthrie, S. Role of the target in the pathfinding of facial visceral motor axons. Mol. Cell. Neurosci. 16, 14–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Caton, A. et al. The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons. Development 127, 1751–1766 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Dietrich, S. et al. The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126, 1621–1629 (1999).So far, this signalling system is the only one known to guide one specific cranial nerve towards its target.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, H. & Tessier-Lavigne, M. En passant neurotrophic action of an intermediate axonal target in the developing mammalian CNS. Nature 401, 765–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. O'Connor, R. & Tessier-Lavigne, M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron 24, 165–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Mendelsohn, C. et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. The midbrain–hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Swiatek, P. J. & Gridley, T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 7, 2071–2084 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Schneider-Maunoury, S. et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Manley, N. R. & Capecchi, M. R. Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 192, 274–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Gavalas, A. et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125, 1123–1136 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Barrow, J. R. & Capecchi, M. R. Targeted disruption of the Hoxb-2 locus in mice interferes with expression of Hoxb-1 and Hoxb-4. Development 122, 3817–3828 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Qiu, Y. et al. Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev. 11, 1925–1937 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Osumi, N. et al. Pax-6 is involved in the specification of hindbrain motor neuron subtype. Development 124, 2961–2972 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Matzuk, M. M. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Szucsik, J. C. et al. Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev. Biol. 191, 230–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F. & Pachnis, V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122, 349–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Huang, E. J. et al. POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development 126, 2869–2882 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Due to space limitations, I was able to include only a fraction of pertinent references in table 1. I apologize to those whose work could not be acknowledged here.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Hoxa3

Hoxb3

Hoxa1

Hoxa2

Hoxa4

Hoxb1

kreisler

Gbx2

Shh

Nkx6.1

Lmx1a

Hoxb2

Nkx2.2

Pax6

Lhx3

Lhx4

Phox2b

GATA2

GATA3

Krox20

Ebf1

Ret

TAG-1

Cdh8

neurogenin 1

ErbB2

ErbB3

neuregulin

neurogenin 2

Phox2a

DBH

tyrosine hydroxylase

dHand

Mash1

BMP2

choline acetyltransferase

Gfrα1

Gfrα2

GDNF

persephin

artemin

neurturin

CCHS

EDN3

sudden infant death syndrome

Rnx

5-HT2C receptor

5-HT1B receptor

Gli2

Gli3

Ci

Sema3d

neuropilin 1

neuropilin 2

Sema3a

netrin 1

netrin 2

Slit receptors

Eph receptors

ephrins

ErbB4

HGF

Met

Nkx2.9

Glossary

MOEBIUS SYNDROME

A disorder characterized by facial paralysis, attributed to defects in development of the sixth and seventh cranial nerves.

PARAXIAL MESODERM

A region of the mesoderm adjacent to the notochord, which becomes segmented rostrocaudally to give rise to the somites early in development.

PRECHORDAL MESODERM

A tissue derived from the node, lying at the rostral tip of the head process (notochord).

PLACODES

Ectodermal thickenings that give rise to sensory structures or ganglia.

LEUCINE ZIPPER

A leucine-rich domain within a protein that binds to other proteins with a similar domain.

HOMEOBOX

A sequence of about 180 base pairs that encodes a DNA-binding protein sequence known as the homeodomain.

PAIRED BOX

A homeodomain that is homologous to the DNA-binding domain of the Drosophila gene paired.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

BASIC HELIX–LOOP–HELIX

A structural motif present in many transcription factors, which is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

ETHYLNITROSOUREA

An alkylating agent that is the most powerful compound available for mutagenesis in the mouse. It predominantly produces point muations or small lesions in the DNA.

GENE-TRAP SCREEN

A mutation strategy that makes use of insertion vectors to trap or isolate transcripts from flanking genes. The inserted sequence acts as a tag from which to clone the mutated gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordes, S. Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2, 611–623 (2001). https://doi.org/10.1038/35090039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35090039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing