Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anisotropy of thermal diffusivity in the upper mantle

Abstract

Heat transfer in the mantle is a key process controlling the Earth's dynamics. Upper-mantle mineral phases, especially olivine, have been shown to display highly anisotropic thermal diffusivity at ambient conditions1,2, and seismic anisotropy data3 show that preferred orientations of olivine induced by deformation4 are coherent at large scales (>50 km) in the upper mantle. Thus heat transport in the upper mantle should be anisotropic. But the thermal anisotropy of mantle minerals at high temperature1,5 and its relationship with deformation have not been well constrained. Here we present petrophysical modelling and laboratory measurements of thermal diffusivity in deformed mantle rocks between temperatures of 290 and 1,250 K that demonstrate that deformation may induce a significant anisotropy of thermal diffusivity in the uppermost mantle. We found that heat transport parallel to the flow direction is up to 30 per cent faster than that normal to the flow plane. Such a strain-induced thermal anisotropy implies that the upper-mantle temperature distribution, rheology and, consequently, its dynamics, will depend on deformation history. In oceans, resistive drag flow would result in lower vertical diffusivities in both the lithosphere and asthenosphere6 and hence in less effective heat transfer from the convective mantle. In continents, olivine orientations frozen in the lithosphere may induce anisotropic heating above mantle plumes, favouring the reactivation of pre-existing structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Olivine and enstatite lattice-preferred orientations for the studied samples.
Figure 2: Modelled three-dimensional thermal diffusivity and mean acoustic wave velocity distributions.
Figure 3: Thermal diffusivity as a function of temperature as measured in oriented cores of PNG (diamonds), BALD1 (circles and squares), and BALM4 (triangles).

Similar content being viewed by others

References

  1. Kobayashi, Y. Anisotropy of thermal diffusivity in olivine, pyroxene, and dunite. J. Phys. Earth 22, 359–373 (1974).

    Article  CAS  Google Scholar 

  2. Chai, M., Brown, J. M. & Slutsky, L. J. Thermal diffusivity of mantle minerals. Phys. Chem. Minerals 23, 470–475 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet. Sci. 24, 385–432 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Nicolas, A. & Christensen, N. I. in Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System (eds Fuchs, K. & Froidevaux, C.) 111–123 (American Geophysical Union, Washington DC, 1987).

    Book  Google Scholar 

  5. Schärmeli, G. H. in High-Pressure Researches in Geosciences (ed. Schreyer, W.) 349–373 (E. Schweizerbart'sche, Stuttgart, 1982).

    Google Scholar 

  6. Tommasi, A. Forward modeling of the development of seismic anisotropy in the upper mantle. Earth Planet. Sci. Lett. 160, 1–13 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Chastel, Y. B., Dawson, P. R., Wenk, H.-R. & Bennet, K. Anisotropic convection with implications for the upper mantle. J. Geophys. Res. 98, 17757–17771 (1993).

    Article  ADS  Google Scholar 

  8. Blackman, D. K. et al. Teleseismic imaging of subaxial flow at mid-ocean ridges: travel-time effects of anisotropic mineral texture in the mantle. Geophys. J. Int. 127, 415–426 (1996).

    Article  ADS  Google Scholar 

  9. Tommasi, A., Mainprice, D., Canova, G. & Chastel, Y. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations. Implications for upper mantle seismic anisotropy. J. Geophys. Res. 105, 7893–7908 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Mainprice, D. & Humbert, M. Methods of calculating petrophysical properties from lattice preferred orientation data. Surv. Geophys. 15, 575–592 (1994).

    Article  ADS  Google Scholar 

  11. Kanamori, H., Fuji, N. & Mizutani, H. Thermal diffusivity measurement of rock-forming minerals from 300 °K to 1100 °K. J. Geophys. Res. 73, 595–605 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Kasahara, J., Suzuki, I., Kumazawa, M., Kobayashi, Y. & Iida, K. Anisotropism of P wave in dunite. Zisin (J. Seismol. Soc. Jpn) 21, 222–228 (1968).

    Google Scholar 

  13. Horai, K. & Susaki, J. The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar. Phys. Earth Planet. Inter. 55, 292–305 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Seipold, U., Mueller, H. J. & Tuisku, P. Principle differences in the pressure dependence of thermal and elastic properties of crystalline rocks. Phys. Chem. Earth 23, 357–360 (1998).

    Article  Google Scholar 

  15. Katsura, T. Thermal diffusivity of olivine under upper mantle conditions. Geophys. J. Int. 122, 63–69 (1995).

    Article  ADS  Google Scholar 

  16. Shankland, T. J., Nitsan, U. & Duba, A. G. Optical absorption and radiative heat transport in olivine at high temperature. J. Geophys. Res. 84, 1603–1610 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Schatz, J. F. & Simmons, G. Thermal conductivity of Earth materials at high temperatures. J. Geophys. Res. 77, 6966–6983 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Holt, J. B. Thermal diffusivity of olivine. Earth Planet. Sci. Lett. 27, 404–408 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Seipold, U. Temperature dependence of thermal transport properties of crystalline rocks–general law. Tectonophysics 291, 161–171 (1998).

    Article  ADS  Google Scholar 

  20. Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699–1706 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Klemens, P. G. Thermal conductivity and lattice vibrational modes. Solid State Phys. 7, 1–98 (1958).

    Article  ADS  CAS  Google Scholar 

  22. Bouhifd, M. A., Andrault, D., Fiquet, G. & Richet, P. Thermal expansion of forsterite up to the melting point. Geophys. Res. Lett. 23, 134–1136 (1996).

    Article  Google Scholar 

  23. Vauchez, A., Barruol, G. & Tommasi, A. Why do continents break up parallel to ancient orogenic belts? Terra Nova 9, 62–66 (1997).

    Article  ADS  Google Scholar 

  24. Tommasi, A. & Vauchez, A. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth Planet. Sci. Lett. 185, 199–210 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Achauer, U. & KRISP working group. New ideas on the Kenya rift based on the inversion of the combined dataset of the 1985 and 1989/90 seismic tomography experiments. Tectonophysics 236, 305–329 (1988).

    Article  ADS  Google Scholar 

  26. Seipold, U. Simultaneous measurements of thermal diffusivity and thermal conductivity under high pressure using thermal pulse of finite length. High Temp.-High Press. 20, 609–613 (1988).

    CAS  Google Scholar 

  27. Abramson, E. H., Brown, M., Slutsky, L. J. & Zaug, J. The elastic constants of San Carlos olivine up to 17 GPa. J. Geophys. Res. 102, 12252–12263 (1997).

    Article  ADS  Google Scholar 

  28. Duffy, T. S. & Vaughan, M. T. Elasticity of enstatite and its relationships to crystal structure. J. Geophys. Res. 93, 383–391 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Karger for participation in the measurements, and M. Ferrero and F. Boudier for providing the samples from Baldissero and Papua New Guinea, respectively. The Laboratoire de Tectonophysique's EBSD system was funded by the CNRS/INSU, Université of Montpellier II, and NSF project “Anatomy of an archean craton”. This work was supported by the CNRS/INSU programme “Action Thématique Innovante”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Tommasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommasi, A., Gibert, B., Seipold, U. et al. Anisotropy of thermal diffusivity in the upper mantle. Nature 411, 783–786 (2001). https://doi.org/10.1038/35081046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081046

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing