Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intraspecific competition favours niche width expansion in Drosophila melanogaster

Abstract

Ecologists have proposed that when interspecific competition is reduced, competition within a species becomes a potent evolutionary force leading to rapid diversification1. This view reflects the observation that populations invading species-poor communities frequently evolve broader niches2. Niche expansion can be associated with an increase in phenotypic variance3,4 (known as character release5), with the evolution of polymorphisms6,7,8,9, or with divergence into many species using distinct resources10,11,12,13 (adaptive radiation). The relationship between intraspecific competition and diversification is known from theory14,15, and has been used as the foundation for some models of speciation16,17,18,19,20. However, there has been little empirical proof that niches evolve in response to intraspecific competition. To test this hypothesis, I introduced cadmium-intolerant Drosophila melanogaster populations to environments containing both cadmium-free and cadmium-laced resources. Here I show that populations experiencing high competition adapted to cadmium more rapidly than low competition populations. This provides experimental confirmation that competition in a population can drive niche expansion onto new resources for which competition is less severe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High competition Drosophila populations (squares) adapt to cadmium more rapidly than low competition populations (crosses).
Figure 2: Survivorship of eggs from matings of parents emerging from different cadmium concentrations.

Similar content being viewed by others

References

  1. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, New York, 1954).

    Google Scholar 

  2. Werner, T. K. & Sherry, T. W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin's Finch” of Cocos Island, Costa Rica. Proc. Natl Acad. Sci. USA 84, 5506–5510 (1986).

    Article  ADS  Google Scholar 

  3. Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 49, 377–389 (1965).

    Article  Google Scholar 

  4. Lister, B. C. The nature of niche expansion in West Indian Anolis lizards. I: ecological consequences of reduced competition. Evolution 30, 659–676 (1976).

    Article  Google Scholar 

  5. Grant, P. R. Convergent and divergent character displacement. Biol. J. Linn. Soc. 4, 39–69 (1972).

    Article  Google Scholar 

  6. Robinson, B. W. & Schluter, D. in Adaptive Genetic Variation in the Wild (eds Mousseau, T., Sinervo, B. & Endler, J. A.) 65–94 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  7. Gislason, D., Ferguson, M. M., Skulason, S. & Snorrason, S. S. Rapid and coupled phenotypic and genetic divergence in Icelandic arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 56, 2229–2234. (1999).

    Article  Google Scholar 

  8. Knerer, G. & Atwood, C. E. Diprionid sawflies: polymorphism and speciation. Science 179, 1090–1099 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Meyer, A. Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39, 279–299 (1990).

    Article  Google Scholar 

  10. Fryer, G. & Iles, T. D. The Cichlid Fishes of the Great Lakes of Africa (Oliver and Boyd, London, 1972).

    Google Scholar 

  11. Kambysellis, M. P. & Craddock, E. M. in Molecular Evolution and Adaptive Radiation (eds Givnish, T. J. & Sytsma, K. J.) 475–509 (Cambridge Univ. Press, New York, 1997).

    Google Scholar 

  12. Lack, D. Darwin's Finches (Cambridge Univ. Press, Cambridge, 1947).

    Google Scholar 

  13. Schliewen, U. K., Tautz, D. & Paabo, S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368, 629–632 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Wilson, D. S. & Turelli, M. Stable underdominance and the evolutionary invasion of empty niches. Am. Nat. 127, 835–850 (1986).

    Article  Google Scholar 

  15. Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).

    Article  Google Scholar 

  16. Rosenzweig, M. L. Competitive Speciation. Biol. J. Linn. Soc. 10, 275–289 (1978).

    Article  Google Scholar 

  17. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Doebeli, M. A quantitative genetic competition model for sympatric speciation. J. Evol. Biol. 9, 893–909 (1996).

    Article  Google Scholar 

  19. Gibbons, J. R. H. A model for sympatric speciation in Megarhyssa (Hymenoptera: Ichneumonidae): competitive speciation. Am. Nat. 114, 719–741 (1979).

    Article  Google Scholar 

  20. Drossel, B. & McKane, A. Competitive speciation in quantitative genetic models. J. Theor. Biol. 204, 467–478 (2000).

    Article  CAS  Google Scholar 

  21. Shirley, M. D. F. & Sibly, R. M. Genetic basis of a between-environment trade-off involving resistance to cadmium in Drosophila melanogaster. Evolution 53, 826–836 (1999).

    Article  Google Scholar 

  22. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Hori, M. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Benkman, C. W. Are the ratios of bill crossing morphs in crossbills the result of frequency-dependent selection? Evol. Biol. 10, 119–126 (1996).

    Google Scholar 

  25. Prokopy, R. J., Diehl, S. R. & Cooley, S. S. Behavioral evidence for host races in Rhagoletis pomonella. Oecologia 76, 138–147 (1988).

    Article  ADS  Google Scholar 

  26. Feder, J. L., Reynolds, K., Go, W. & Wang, E. C. Intra- and interspecific competition and host race formation in the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae). Oecologia 101, 416–425 (1995).

    Article  ADS  Google Scholar 

  27. Jones, C. D. The genetic basis of Drosophila sechellia's resistance to a host plant toxin. Genetics 149, 1899–1908. (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fisher, R. A. The Genetical Theory of Natural Selection (Dover, New York, 1958).

    MATH  Google Scholar 

  29. Coyne, J. A., Barton, N. H. & Turelli, M. Perspective: A critique of Sewall Wright's shifting balance theory of evaluation. Evolution 51, 643–671 (1997).

    Article  Google Scholar 

  30. Leroi, A. M., Chippindale, A. K. & Rose, M. R. Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 1. The role of genotype-by-environment interaction. Evolution 48, 1244–1257 (1994).

    PubMed  Google Scholar 

Download references

Acknowledgements

I thank S. Nuzhdin, M. Doebeli, R. Haygood, M. Servedio and B. Holland for discussions on experimental design. P. Wescott, E. Barker and E. Baumgartner provided invaluable laboratory help. This research was supported by a Daphne and Ted Pengelly Grant (UC Davis), an NSF grant to S. Nuzhdin, and an NSF Pre-doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolnick, D. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001). https://doi.org/10.1038/35068555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068555

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing