Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic evidence for a solar argon component in the Earth's mantle

Abstract

Determining the presence of solar argon, krypton and xenon in the Earth's mantle is important for understanding the source, incorporation mechanism and transport of noble gases in the Earth, as well as the evolutionary history of the Earth's atmosphere. There are strong indications in the mid-ocean ridge basalt database that solar helium and neon are indeed present1,2,3, and modelling exercises indicate that the compositions of all five noble gases in the Earth's primordial inventory were solar-like3,4,5. But solar isotopic signatures of the heavier noble gases argon and xenon, which differ significantly from atmospheric compositions, have appeared only subtly if at all in analyses of mantle-derived samples6 — their non-radiogenic isotope ratios are generally found to be indistinguishable or only slightly different from those in the atmosphere2,7,8,9,10. The first promising isotopic evidence for a solar-like argon component in the Earth's mantle appeared in a recent analysis of basalt glasses from the Hawaiian Loihi seamount11. Here I show that recent measurements12 of neon and argon isotopes in a suite of mid-ocean ridge basalt samples from the southern East Pacific Rise greatly strengthen the case for the presence of solar argon, and by inference krypton and xenon, in the Earth's mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation diagram of neon and argon isotope ratios measured in MORB glasses from the southern EPR12.
Figure 2: Modelling fits to neon and argon isotopic data from the EPR and Loihi sample suites.

Similar content being viewed by others

References

  1. Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. & Clague, D. A. Asolar component in the Earth: Neon isotope anomalies in Loihi and Kilauea basalts. Nature 349, 149–151 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. & Clague, D. A. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth. Geochim. Cosmochim. Acta 57, 859–874 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Farley, K. A. & Poreda, R. J. Mantle neon and atmospheric contamination. Earth Planet. Sci. Lett. 114, 325–339 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Pepin, R. O. Evolution of Earth's noble gases: Consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Pepin, R. O. Are isotopically solar components present in heavy noble gases from terrestrial mantle samples? Perhaps … Lunar Planet. Sci. XXVI, 1109–1110 (Lunar & Planetary Institute, Houston,(1995)).

    ADS  Google Scholar 

  7. Ozima, M. & Zashu, S. Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105, 13–27 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Ozima, M. Noble gas state in the mantle. Rev. Geophys. 32 (4), 405–426 (1994).

    Article  ADS  Google Scholar 

  9. Hiyagon, H., Ozima, M., Marty, B., Zashu, S. & Sakai, H. Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: Constraints on the early history of the Earth. Geochim. Cosmochim. Acta 56, 1301–1316 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Poreda, R. J. & Farley, K. A. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Valbracht, P. J., Staudacher, T., Malahoff, A. & Allègre, C. J. Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett. 150, 399–411 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Niedermann, S., Bach, W. & Erzinger, J. Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: Decoupling of helium and neon isotope systematics. Geochim. Cosmochim. Acta 61, 2697–2715 (1997).

    Article  ADS  Google Scholar 

  13. Burnard, P., Graham, D. & Turner, G. Vesicle-specific noble gas analyses of “popping rock”: Implications for primordial noble gases in Earth. Science 276, 568–571 (1997).

    Article  CAS  Google Scholar 

  14. Becker, R. H., Schlutter, D. J., Rider, P. E. & Pepin, R. O. An acid-etch study of the Kapoeta achondrite: Implications for the argon-36/argon-38 ratio in the solar wind. Meteorit. Planet. Sci. 33, 109–113 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Pepin, R. O. & Schlutter, D. J. Measurement of neon and argon isotopic compositions in single lunar regolith grains. Meteorit. Planet. Sci. 32, A104–A105 (1997).

    Google Scholar 

  16. Benkert, J-P., Baur, H., Signer, P. & Wieler, R. He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res. 98, 13147–13162 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Patterson, D. B., Honda, M. & McDougall, I. Atmospheric contamination: A possible source for heavy noble gases in basalts from Loihi seamount, Hawaii. Geophys. Res. Lett. 17, 705–708 (1990).

    Article  ADS  Google Scholar 

  18. Allègre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1986).

    Article  ADS  Google Scholar 

  19. Lux, G. The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Porcelli, D. & Wasserburg, G. J. Mass transfer of xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 1991–2008 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Moreira, M., Kunz, J. & Allègre, C. J. Rare gas systematics in popping rock; Isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Zahnle, K., Kasting, J. & Pollack, J. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502–527 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Ozima, M. Primordial terrestrial noble gases and Earth evolution. Eos 78, F810 (1997).

    Google Scholar 

  24. Harper, C. L. J & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814–1818 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Pepin, R. O., Becker, R. H. & Rider, P. E. Xenon and krypton isotopes in extraterrestrial regolith soils and in the solar wind. Geochim. Cosmochim. Acta 59, 4997–5022 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Eberhardt, P., Eugster, O. & Marti, K. Aredetermination of the isotopic composition of atmospheric neon. Z. Naturforsch. 20a, 623–624 (1965).

    ADS  CAS  Google Scholar 

  27. Nier, A. O. Aredetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys. Rev. 77, 789–793 (1950).

    Article  ADS  CAS  Google Scholar 

  28. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, (1983)).

    Google Scholar 

  29. Murer, C. A., Baur, H., Signer, P. & Wieler, R. Helium, neon, and argon abundances in the solar wind: In vacuo etching of meteoritic iron-nickel. Geochim. Cosmochim. Acta 61, 1303–1314 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Honda for suggestions, and S. Niedermann for additional information about his EPR data. This work was supported by the Program of NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Pepin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepin, R. Isotopic evidence for a solar argon component in the Earth's mantle. Nature 394, 664–667 (1998). https://doi.org/10.1038/29272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29272

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing