Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of hydrogen migration in solids using switchable mirrors

Abstract

Switchable mirrors1,2,3 made of thin films of the hydrides of yttrium (YHx), lanthanum (LaHx) or rare-earth metals exhibit spectacular changes in their optical properties as x is varied from 0 to 3. For example, α-YHx <0.23 is a shiny, hexagonally close-packed metal, β-YH2±δ is a face-centred cubic metal with a blue tint in reflection and a small transparency window at red wavelengths, whereas hexagonally close-packed γ-YHx >2.85 is a yellowish transparent semiconductor. Here we show that this concentration dependence of the optical properties, coupled with the high mobility of hydrogen in metals, offers the possibility of real-time visual observation of hydrogen migration in solids. We explore changes in the optical properties of yttrium films in which hydrogen diffuses laterally owing to a large concentration gradient. The optical transmission profiles along the length of the film vary in such a way as to show that the formation of the various hydride phases is diffusion-controlled. We can also induce electromigration of hydrogen, which diffuses towards the anode when a current flows through the film. Consequently, hydrogen in insulating YH3−δ behaves as a negative ion, in agreement with recent strong-electron-correlation theories4,5. This ability to manipulate the hydrogen distribution (and thus the optical properties) electrically might be useful for practical applications of these switchable mirrors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radical hydrogen diffusion in yttrium.
Figure 2: Linear hydrogen diffusion in yttrium.
Figure 3: Scaling analysis.
Figure 4: Electromigration of hydrogen in yttrium.

Similar content being viewed by others

References

  1. Huiberts, J. N. et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Huiberts, J. N. et al. Synthesis of yttrium trihydride films for ex-situ measurements. J. Alloys Compounds 239, 158 (1996).

    Article  CAS  Google Scholar 

  3. Griessen, R. et al. Yttrium and lanthanum hydride films with switchable optical properties. J. Alloys Compounds 253–254;, 44 (1997).

    Article  Google Scholar 

  4. Ng, K. K., Zhang, F. C., Anisimov, V. I. & Rice, T. M. Electronic structure of lanthanum hydrides with switchable optical properties. Phys. Rev. Lett. 78, 1311 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Eder, R., Pen, H. A. & Sawatzky, G. A. Kondo-lattice-like effects of hydrogen in transition metals. Phys. Rev. B 56, 10115 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Völkl, J. & Alefeld, G. Diffusion of hydrogen in metals. Topics Appl. Phys. 28, 321 (1978).

    Article  Google Scholar 

  7. Fukai, Y. & Sugimoto, H. Diffusion of hydrogen in metals. Adv. Phys. 34, 263 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Qi, Zh., Volkl, J., Lässer, R. & Wenzl, H. Tritium diffusion in V, Nb and Ta. J. Phys. F 13, 2053 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Vajda, P. in Handbook on the Physics and Chemistry of Rare Earths Ch. 20 (eds Gschneider, K. A. & Eyring, L.) 207–291 (Elsevier, Amsterdam, (1995)).

    Google Scholar 

  10. Kremers, M. et al. Optical transmission spectroscopy of switchable yttrium hydride films. Phys. Rev. B 57, 4943 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Boltzmann, L. Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten. Weid. Ann. 53, 959 (1894).

    Article  Google Scholar 

  12. Crank, J. The Mathematics of Diffusion 105–106 & 230–232 (Clarendon, Oxford, (1975)).

    Google Scholar 

  13. Kidson, G. V. Some aspects of the growth of diffusion layers in binary systems. J. Nucl. Mater. 3, 21 (1961).

    Article  ADS  CAS  Google Scholar 

  14. Adda, Y. & Philibert, J. La Diffusion dans les Solides 614–621 (Inst. Nat. des Sciences et Techniques Nucléaires, Saclay, (1966).

    Google Scholar 

  15. Tu, K.-N., Mayer, K.-N. J. W. FeldmanL. C. Electronic Thin Film Science 294–324 (Macmillan, New York, (1992)).

    Google Scholar 

  16. Weaver, H. T. Nuclear magnetic resonance study of hydrogen diffusion in yttrium trihydride. J. Chem. Phys. 56, 3193 (1972).

    Article  ADS  CAS  Google Scholar 

  17. van Ek, J. & Lodder, A. Electromigration of hydrogen in metals: theory and experiment.In Defect and Diffusion Forum Vols 115 116,, 1 (1994).

    Article  Google Scholar 

  18. Zhang, F. C. & Rice, T. M. Effective hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Griessen, R. Schaltbare Spiegel aus Metallhydriden. Phys. Bl. 53, 1207 (1997).

    Article  CAS  Google Scholar 

  20. Verbruggen, A. H., Griessen, R., Rector, J. H. Hall voltage induced by hydrogen diffusion in palladium. Phys. Rev. Lett. 52, 1625 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Brouwer, R. C. & Griessen, R. Electromigration of hydrogen in alloys. Evidence of unscreened proton behavior. Phys. Rev. Lett. 62, 1760 (1989).

    Article  ADS  CAS  Google Scholar 

  22. van der Sluis, P., Ouwerkerk, M. & Duine, P. A. Optical switches based on magnesium lanthanide alloy hydrides. Appl. Phys. Lett. 70, 3356 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Hjörvarsson, E. S. Kooij, M. W. J. Prins, P. van der Sluis, M. Ouwerkerk, P. H. L. Notten and P. J. Kelly for discussions. This work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is supported by NWO; it was also supported in part by the European Commission through the TMR programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. van der Molen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Broeder, F., van der Molen, S., Kremers, M. et al. Visualization of hydrogen migration in solids using switchable mirrors. Nature 394, 656–658 (1998). https://doi.org/10.1038/29250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29250

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing