Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum error correction for communication with linear optics

Abstract

Improving the signal-to-noise ratio in optical communication systems is a fundamental requirement for cost-effective data transmission. This is particularly important for the transmission of noise-intolerant quantum states: excess noise at the quantum level destroys the coherence of the states, rendering classical error correction or amplifier-based schemes1 useless for quantum communication. Only quantum error correction2,3 can remove the effects of noise without corrupting the fragile superpositions of quantum states. But difficulties arise in the practical implementation of such a correction process because nonlinear operations4 have been thought to be required, greatly reducing the efficiency of any optical scheme. Here I report an efficient, compact scheme involving only linear optical elements and feedback, which performs error correction for both quantum and classical noise. In the classical case, the noise penalty incurred is no worse than for ideal amplification. But for low-noise quantum optical communication, this penalty may be eliminated entirely. This quantum error-correction scheme may thus find application in quantum cryptographic networks5,6,7 (where low noise is equivalent to high security), possibly extending their range far beyond limits imposed by system losses7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haus, H. A. & Mullen, J. A. Quantum noise in linear amplifiers. Phys. Rev. 128, 2407–2413 (1962).

    Article  ADS  Google Scholar 

  2. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. DiVincenzo, D. P. & Smolin, J. in Proc. Workshop on Physics and Computation PhysComp '94 14–23 (IEEE Computer Soc. Press, Los Alamitos, CA, 1994).

    Book  Google Scholar 

  5. Bennett, C. H. & Brassard, G. The dawn of a new era for quantum cryptography: the experimental prototype is working! SIGACT News 20, 78–82 (1989).

    Article  Google Scholar 

  6. Townsend, P. D., Rarity, J. G. & Tapster, P. R. Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel. Electron. Lett. 29, 1291–1293 (1993).

    Article  ADS  Google Scholar 

  7. Muller, A. et al. Plug and play systems for quantum cryptography. Appl. Phys. Lett. 70, 793–795 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Shor, P. W. in Proc. 35th Annual Symp. on the Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Soc. Press, Los Alamitos, CA, 1994).

    Google Scholar 

  9. Wootters, W. K. & Zurek, W. H. Asingle quantum cannot be cloned. Nature 299, 802–803 1982).

    Article  ADS  CAS  Google Scholar 

  10. Braunstein, S. L. Error correction for continuous quantum variables. Phys. Rev. Lett. 80, 4084–4087 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Lloyd, S. & Slotine, J.-J. E. Analog quantum error correction. Phys. Rev. Lett. 80, 4088–4091 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Walls, D. F. Squeezed states of light. Nature 306, 141–146 (1983).

    Article  ADS  Google Scholar 

  15. Zukowski, M. Entanglement and photons. Laser Phys. 4, 690–709 (1994).

    Google Scholar 

  16. Musslimani, Z. H., Braunstein, S. L., Mann, A. & Revzen, M. Destruction of photocount oscillations by thermal noise. Phys. Rev. A 51, 4967–4973 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Mu, Y., Seberry, J. & Zheng, Y. Shared cryptographic bits via quantized quadrature phase amplitudes of light. Opt. Commun. 123, 344–352 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Cohen, O. Quantum cryptography using nonlocal measurements. Helv. Phys. Acta 70, 710–726 (1997).

    MathSciNet  MATH  Google Scholar 

  19. Bennett, C. H., Brassard, G. & Robert, J.-M. Privacy amplification by public discussion. SIAM J. Comput. 17, 210–229 (1988).

    Article  MathSciNet  Google Scholar 

  20. Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Braunstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunstein, S. Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998). https://doi.org/10.1038/27850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27850

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing