Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Binding of double-strand breaks in DNA by human Rad52 protein

Abstract

Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer1. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining2. The contribution of homologous recombination to vertebrate DSB repair, however, is important3,4. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining5. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. Amodel for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA end-binding and end-to-end interactions promoted by hRad52.
Figure 2: Stimulation of DNA ligation by hRad52.
Figure 3: DNA-end protection by hRad52 protein.
Figure 4: Model for the initiation of double-strand break repair.

Similar content being viewed by others

References

  1. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (American Society for Microbiology, Washington, 1995).

    Google Scholar 

  2. Kanaar, R., Hoeijmakers, J. H. J. & van Gent, D. C. Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol. 8, 483–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Liang, F., Han, M. G., Romanienko, P. J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl Acad. Sci. USA 95, 5172–5177 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, H., Treco, D. & Szostak, J. W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1162 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Sugawara, N. & Haber, J. E. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12, 563–575 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen, Z. et al. Self-association of human Rad52 protein. Mutat. Res. 364, 81–89 (1996).

    Article  ADS  PubMed  Google Scholar 

  9. Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S. & Ogawa, T. Rad52 forms ring structures and cooperates with RPA in single-strand DNA annealing. Genes to Cells 3, 145–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Van Dyck, E., Hajibagheri, N. M. A., Stasiak, A. & West, S. C. Visualization of human Rad52 protein and its complexes with hRad51 and DNA. J. Mol. Biol. 284, 1027–1038 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Benson, F. E., Baumann, P. & West, S. C. Synergistic actions of Rad51 and Rad52 in genetic recombination and DNA repair. Nature 391, 401–404 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Baumann, P., Benson, F. E. & West, S. C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Nussenzweig, A., Sokol, K., Burgman, P., Li, L. G. & Li, G. C. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc. Natl Acad. Sci. USA 94, 13588–13593 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson, C. W. & Carter, T. H. in Molecular Analysis of DNA Rearrangements in the Immune System (eds Jessberger, R. & Lieber, M. R.) 91–112 (Springer, Heidelberg, 1996).

    Book  Google Scholar 

  16. Rijkers, T. et al. Targeted inactivation of MmRAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamaguchi-Iwai, Y. et al. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell Biol. 18, 6430–6435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Game, J. C. DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces. Semin. Cancer Biol. 4, 73–83 (1993).

    CAS  PubMed  Google Scholar 

  19. Petes, T. D., Malone, R. E. & Symington, L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis and Energetics 407–521 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  20. Mortensen, U. H., Bendixen, C., Sunjevaric, I. & Rothstein, R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl Acad. Sci. USA 93, 10729–10734 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddy, G., Golub, E. I. & Radding, C. M. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat. Res. 377, 53–59 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Sugiyama, T., New, J. H. & Kowalczykowski, S. C. DNA annealing by Rad52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl Acad. Sci. USA 95, 6049–6054 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. New, J. H., Sugiyama, T., Zaitseva, E. & Kowalczykowski, S. C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein-A. Nature 391, 407–410 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Shinohara, A. & Ogawa, T. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391, 404–407 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Sung, P. Function of yeast Rad52 protein as a mediator between replication protein-A and the Rad51 recombinase. J. Biol. Chem. 272, 28194–28197 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Gasior, S. L., Wong, A. K., Kora, Y., Shinohara, A. & Bishop, D. K. Rad52 associates with RP-A and functions with Rad55 and Rad57 to assemble meiotic recombination complexes. Genes Dev. 12, 2208–2221 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sung, P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein-A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11, 1111–1121 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Subramani, S. & Seaton, B. L. in Genetic Recombination (eds Kucherlapati, R. & Smith, G. R.) 549–573 (American Society for Microbiology, Washington, DC, 1988).

    Google Scholar 

  29. Johnson, B. L., Thyagarajan, B., Krueger, L., Hirsch, B. & Campbell, C. Elevated levels of recombinational DNA repair in human somatic cells expressing the Saccharomyces cerevisiae RAD52 gene. Mutat. Res. DNA Repair 363, 179–189 (1996).

    Article  PubMed  Google Scholar 

  30. Park, M. S. Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J. Biol. Chem. 270, 15467–15470 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for their interest, suggestions and careful reading of the manuscript. We also thank J. Dubochet for his interest in the project, and N. Hajibagheri for related electron microscopic analyses. This work was supported by the Imperial Cancer Research Fund, the Human Frontiers Science Program, the Swiss National Foundation and the Swiss-British Council Joint Research Program. E.V.D. was supported in part by an EC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. West.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyck, E., Stasiak, A., Stasiak, A. et al. Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398, 728–731 (1999). https://doi.org/10.1038/19560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19560

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing