Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Venus water loss is dominated by HCO+ dissociative recombination

Abstract

Despite its Earth-like size and source material1,2, Venus is extremely dry3,4, indicating near-total water loss to space by means of hydrogen outflow from an ancient, steam-dominated atmosphere5,6. Such hydrodynamic escape likely removed most of an initial Earth-like 3-km global equivalent layer (GEL) of water but cannot deplete the atmosphere to the observed 3-cm GEL because it shuts down below about 10–100 m GEL5,7. To complete Venus water loss, and to produce the observed bulk atmospheric enrichment in deuterium of about 120 times Earth8,9, nonthermal H escape mechanisms still operating today are required10,11. Early studies identified these as resonant charge exchange12,13,14, hot oxygen impact15,16 and ion outflow17,18, establishing a consensus view of H escape10,19 that has since received only minimal updates20. Here we show that this consensus omits the most important present-day H loss process, HCO+ dissociative recombination. This process nearly doubles the Venus H escape rate and, consequently, doubles the amount of present-day volcanic water outgassing and/or impactor infall required to maintain a steady-state atmospheric water abundance. These higher loss rates resolve long-standing difficulties in simultaneously explaining the measured abundance and isotope ratio of Venusian water21,22 and would enable faster desiccation in the wake of speculative late ocean scenarios23. Design limitations prevented past Venus missions from measuring both HCO+ and the escaping hydrogen produced by its recombination; future spacecraft measurements are imperative.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelled densities for the Venus upper atmosphere.
Fig. 2: Model loss rates for hydrogen and deuterium.
Fig. 3: Implications of our escape modelling for Venus water history.

Similar content being viewed by others

Data availability

Tables containing all reactions used in the model, including their adopted rate coefficients and computed column rates, are provided in a supplementary PDF file accessible on the journal website. These rates are also accessible in the archived code repository listed below, which also includes our adopted photo cross-sections and all other source data used in our model. Model densities for all species, computed rates for reactions shown in Fig. 2, assumed temperature and escape probabilities and computed photo rates are provided in Excel format in the online version of the paper; this file also includes data for our illustrative water-inventory timelines. Source data are provided with this paper.

Code availability

All model code is available at github.com/emcangi/VenusPhotochemistry. The version of the model used to prepare the manuscript is archived on Zenodo at https://doi.org/10.5281/zenodo.10460004.

References

  1. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).

    Article  ADS  Google Scholar 

  2. Salvador, A. et al. Magma ocean, water, and the early atmosphere of Venus. Space Sci. Rev. 219, 51 (2023).

    Article  ADS  CAS  Google Scholar 

  3. Moroz, V. I. et al. Spectrum of the Venus day sky. Nature 284, 243–244 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018).

    Article  ADS  Google Scholar 

  5. Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Johnstone, C. P. Hydrodynamic escape of water vapor atmospheres near very active stars. Astrophys. J. 890, 79 (2020).

    Article  ADS  CAS  Google Scholar 

  8. Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. De Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991).

    Article  ADS  PubMed  Google Scholar 

  10. Kumar, S., Hunten, D. M. & Pollack, J. B. Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55, 369–389 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Donahue, T. M. New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Stewart, A. I. F. in Second Arizona Conference on Planetary Atmospheres (1968).

  13. Hodges, R. R. An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. Planets 104, 8463–8471 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Chaufray, J.-Y., Bertaux, J.-L., Quémerais, E., Villard, E. & Leblanc, F. Hydrogen density in the dayside Venusian exosphere derived from Lyman-α observations by SPICAV on Venus Express. Icarus 217, 767–778 (2012).

    Article  ADS  CAS  Google Scholar 

  15. McElroy, M. B., Prather, M. J. & Rodriguez, J. M. Escape of hydrogen from Venus. Science 215, 1614–1615 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Gu, H., Cui, J., Niu, D. & Yu, J. Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms. Mon. Not. R. Astron. Soc. 501, 2394–2402 (2021).

    Article  ADS  CAS  Google Scholar 

  17. Hartle, R. E. & Grebowsky, J. M. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. Planets 98, 7437–7445 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Persson, M. et al. H+/O+ escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45, 10805–10811 (2018).

  19. Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006).

    Article  ADS  CAS  Google Scholar 

  20. Gillmann, C. et al. The long-term evolution of the atmosphere of Venus: processes and feedback mechanisms. Space Sci. Rev. 218, 56 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Avice, G. et al. Noble gases and stable isotopes track the origin and early evolution of the Venus atmosphere. Space Sci. Rev. 218, 60 (2022).

    Article  ADS  CAS  Google Scholar 

  23. Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Article  Google Scholar 

  24. Chaffin, M. S., Deighan, J., Schneider, N. M. & Stewart, A. I. F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 10, 174–178 (2017).

    Article  ADS  CAS  Google Scholar 

  25. Cangi, E. M., Chaffin, M. S. & Deighan, J. Higher Martian atmospheric temperatures at all altitudes increase the D/H fractionation factor and water loss. J. Geophys. Res. Planets 125, e06626 (2020).

    Article  Google Scholar 

  26. Cangi, E., Chaffin, M., Yelle, R., Gregory, B. & Deighan, J. Fully coupled photochemistry of the deuterated ionosphere of Mars and its effects on escape of H and D. J. Geophys. Res. Planets 128, e2022JE007713 (2023).

    Article  ADS  CAS  Google Scholar 

  27. Yung, Y. L. & Demore, W. B. Photochemistry of the stratosphere of Venus: implications for atmospheric evolution. Icarus 51, 199–247 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Fox, J. L. & Sung, K. Y. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. Space Phys. 106, 21305–21335 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Krasnopolsky, V. A. A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230–246 (2012).

    Article  ADS  CAS  Google Scholar 

  30. Fedorova, A. et al. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. J. Geophys. Res. Planets 113, E00B22 (2008).

    Article  Google Scholar 

  31. Paxton, L. J., Anderson Jr, D. E. & Stewart, A. I. F. Analysis of Pioneer Venus Orbiter ultraviolet spectrometer Lyman α data from near the subsolar region. J. Geophys. Res. Space Phys. 93, 1766–1772 (1988).

    Article  ADS  Google Scholar 

  32. Fox, J. L. The post-terminator ionosphere of Venus. Icarus 216, 625–639 (2011).

    Article  ADS  CAS  Google Scholar 

  33. Brinton, H. C. et al. Venus nighttime hydrogen bulge. Geophys. Res. Lett. 7, 865–868 (1980).

    Article  ADS  CAS  Google Scholar 

  34. Martinez, A. et al. Exploring the variability of the Venusian thermosphere with the IPSL Venus GCM. Icarus 389, 115272 (2023).

    Article  CAS  Google Scholar 

  35. Navarro, T. et al. Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation. Icarus 366, 114400 (2021).

    Article  CAS  Google Scholar 

  36. Fox, J. L. The chemistry of protonated species in the Martian ionosphere. Icarus 252, 366–392 (2015).

    Article  ADS  CAS  Google Scholar 

  37. Taylor, H. A., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H. & Cordier, G. R. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter. IEEE Tran. Geosci. Remote Sens. 18, 44–49 (1980).

    Article  ADS  Google Scholar 

  38. Miller, K. L., Knudsen, W. C. & Spenner, K. The dayside Venus ionosphere: I. Pioneer-Venus retarding potential analyzer experimental observations. Icarus 57, 386–409 (1984).

    Article  ADS  CAS  Google Scholar 

  39. Barabash, S. et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci. 55, 1772–1792 (2007).

    Article  ADS  CAS  Google Scholar 

  40. Bertaux, J. L. & Clarke, J. T. Deuterium content of the Venus atmosphere. Nature 338, 567–568 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Donahue, T. M. Deuterium on Venus. Nature 340, 513–514 (1989).

    Article  ADS  Google Scholar 

  42. Liang, M.-C. & Yung, Y. L. Modeling the distribution of H2O and HDO in the upper atmosphere of Venus. J. Geophys. Res. Planets 114, E00B28 (2009).

    Article  Google Scholar 

  43. Parkinson, C. D. et al. Photochemical control of the distribution of Venusian water. Planet. Space Sci. 113, 226–236 (2015).

    Article  ADS  Google Scholar 

  44. Widemann, T. et al. Venus evolution through time: key science questions, selected mission concepts and future investigations. Space Sci. Rev. 219, 56 (2023).

    Article  ADS  Google Scholar 

  45. McClintock, W. E. et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission. Space Sci. Rev. 195, 75–124 (2015).

    Article  ADS  Google Scholar 

  46. Bertaux, J. L., Goutail, F., Dimarellis, E., Kockarts, G. & van Ransbeeck, E. First optical detection of atomic deuterium in the upper atmosphere from Spacelab 1. Nature 309, 771–773 (1984).

    Article  ADS  CAS  Google Scholar 

  47. Gregory, B. S., Elliott, R. D., Deighan, J., Gröller, H. & Chaffin, M. S. HCO+ dissociative recombination: a significant driver of nonthermal hydrogen loss at Mars. J. Geophys. Res. Planets 128, e2022JE007576 (2023).

    Article  ADS  CAS  Google Scholar 

  48. Barth, C. A., Pearce, J. B., Kelly, K. K., Wallace, L. & Fastie, W. G. Ultraviolet emissions observed near Venus from Mariner V. Science 158, 1675–1678 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Anderson, D. E. The Mariner 5 ultraviolet photometer experiment: analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81, 1213–1216 (1976).

    Article  ADS  CAS  Google Scholar 

  50. Takacs, P., Broadfoot, A., Smith, G. & Kumar, S. Mariner 10 observations of hydrogen Lyman alpha emission from the Venus exosphere: evidence of complex structure. Planet. Space Sci. 28, 687–701 (1980).

    Article  ADS  CAS  Google Scholar 

  51. von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. Arizona Press, 1983).

  52. Hunten, D. M. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973).

    Article  ADS  CAS  Google Scholar 

  53. Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).

    Article  Google Scholar 

  54. Warren, A. O. & Kite, E. S. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl Acad. Sci. 120, e2209751120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chassefière, E. Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101, 26039–26056 (1996).

    Article  ADS  Google Scholar 

  56. Chassefière, E. Loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126, 229–232 (1997).

    Article  ADS  Google Scholar 

  57. Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).

    Article  ADS  CAS  Google Scholar 

  59. Selsis, F., Leconte, J., Turbet, M., Chaverot, G. & Bolmont, É. A cool runaway greenhouse without surface magma ocean. Nature 620, 287–291 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Fox, J. L. & Bougher, S. W. Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55, 357–489 (1991).

    Article  ADS  Google Scholar 

  61. Hodges Jr, R. R. Collision cross sections and diffusion parameters for H and D in atomic oxygen. J. Geophys. Res. 98, 3799–3805 (1993).

    Article  ADS  Google Scholar 

  62. Shizgal, B. D. Escape of H and D from Mars and Venus by energization with hot oxygen. J. Geophys. Res. 104, 14833–14846 (1999).

    Article  ADS  CAS  Google Scholar 

  63. Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. 787, L2 (2014).

    Article  ADS  Google Scholar 

  64. Herrick, R. R. & Hensley, S. Surface changes observed on a Venusian volcano during the Magellan mission. Science 379, 1205–1208 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218, 70 (2022).

    Article  ADS  Google Scholar 

  66. Hedin, A. E., Niemann, H. B., Kasprzak, W. T. & Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, 73–84 (1983).

    Article  ADS  CAS  Google Scholar 

  67. Bertaux, J.-L. et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007).

    Article  ADS  CAS  Google Scholar 

  68. Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22, 712–715 (1970).

    ADS  CAS  Google Scholar 

  69. Lillis, R. et al. Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122, 3815–3836 (2017).

    Article  ADS  CAS  Google Scholar 

  70. Rosati, R. E., Skrzypkowski, M. P., Johnsen, R. & Golde, M. F. Yield of excited CO molecules from dissociative recombination of HCO+ and HOC+ ions with electrons. J. Chem. Phys. 126, 154302–154302 (2007).

    Article  ADS  PubMed  Google Scholar 

  71. Miller, K. L., Knudsen, C. W., Spenner, K., Whitten, R. C. & Novak, V. Solar zenith angle dependence of ionospheric ion and electron temperatures and density on Venus. J. Geophys. Res. Space Phys. 85, 7759–7764 (1980).

    Article  ADS  Google Scholar 

  72. Brace, L. H. et al. The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res. 85, 7663–7678 (1980).

    Article  ADS  Google Scholar 

  73. Kasprzak, W. T. et al. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 225–258 (Univ. Arizona Press, 1997).

  74. Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M. & Spencer, N. W. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. Space Res. 85, 7817–7827 (1980).

    Article  ADS  Google Scholar 

  75. Fox, J. L. & Kliore, A. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 161–188 (Univ. Arizona Press, 1997).

  76. Grebowsky, J. M., Kasprzak, W. T., Hartle, R. E. & Donahue, T. M. A new look at Venus’ thermosphere H distribution. Adv. Space Res. 17, 191–195 (1996).

    Article  ADS  CAS  Google Scholar 

  77. Donahue, T. M., Grinspoon, D. H., Hartle, R. E. & Hodges, R. R. Jr. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 385–414 (Univ. Arizona Press, 1997).

  78. Stolzenbach, A., Lefèvre, F., Lebonnois, S. & Määttänen, A. Three-dimensional modeling of Venus photochemistry and clouds. Icarus 395, 115447 (2023).

    Article  CAS  Google Scholar 

  79. Dickinson, R. E. & Ridley, E. C. Venus mesosphere and thermosphere temperature structure: II. Day-night variations. Icarus 30, 163–178 (1977).

    Article  ADS  CAS  Google Scholar 

  80. Seiff, A. Dynamical implications of the observed thermal contrasts in Venus’ upper atmosphere. Icarus 51, 574–592 (1982).

    Article  ADS  CAS  Google Scholar 

  81. Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3, 117 (2022).

    Article  Google Scholar 

  82. Smrekar, S. E. et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): a selected discovery mission in 53rd Lunar and Planetary Science Conference. LPI contribution no. 2678, id. 1122 (2022).

  83. Helbert, J. et al. The VenSpec suite on the ESA Envision mission – a holistic investigation of the coupled surface atmosphere system of Venus in 16th Europlanet Science Congress, id. EPSC2022-374 (2022).

Download references

Acknowledgements

M.S.C., E.M.C., B.S.G. and R.D.E. were supported by NASA Solar System Workings grant 80NSSC19K0164 and Planetary Science Early Career Award grant 80NSSC20K1081. E.M.C. was also supported by NASA FINESST award 80NSSC22K1326. M.S.C. and E.M.C. thank M. Landis for helpful discussions about water delivery.

Author information

Authors and Affiliations

Authors

Contributions

M.S.C. oversaw the study, performed final model calculations and the photochemical equilibrium calculation and wrote the initial text of the paper. E.M.C. developed the H-bearing and D-bearing photochemical model and nonthermal escape calculation originally used at Mars with a reaction network provided by R.V.Y. and performed initial model calculations for Venus. B.S.G. developed and ran the Monte Carlo model to generate escape probability curves. R.D.E. initially developed the Monte Carlo escape model with support from J.D. and H.G. H.G. performed pilot studies of HCO+-driven loss in the Mars atmosphere. All authors contributed to the interpretation and presentation of model results.

Corresponding author

Correspondence to M. S. Chaffin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Grinspoon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Model densities for all species.

The six panels function only to separate species for clarity.

Extended Data Fig. 2 Key photochemical model inputs.

a, Temperature profiles for neutrals, ions and electrons adapted from the inputs in ref. 28. b, Adopted eddy diffusion profile and molecular diffusion coefficients for H and O atoms.

Extended Data Fig. 3 Implications of HCO+-driven loss for Venus ocean scenarios.

a, Escaping H production rates for the two most important processes in our model. b, Schematic water loss history of Venus.

Extended Data Table 1 Estimated rates for present-day Venus H loss processes
Extended Data Table 2 Data-driven validation of full model output

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Supplementary Tables. Merged PDF containing tables of reactions used in the model, assumed reaction rate coefficients and computed equilibrium model column rates.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaffin, M.S., Cangi, E.M., Gregory, B.S. et al. Venus water loss is dominated by HCO+ dissociative recombination. Nature 629, 307–310 (2024). https://doi.org/10.1038/s41586-024-07261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07261-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing