News & Views in 2016

Filter By:

Article Type
Year
  • Chemists have long been fascinated by electron delocalization, from both a fundamental and applied perspective. Macrocyclic oligomers containing fused ferrocenes provide a new structural framework — containing strongly interacting metal centres — that is capable of supporting substantial charge delocalization.

    • Rebecca A. Musgrave
    • Ian Manners
    News & Views
  • The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

    • Alexander J. Cowan
    News & Views
  • Carbonyls and alkenes, two of the most common functional groups in organic chemistry, generally do not react with one another. Now, a simple Lewis acid has been shown to catalyse metathesis between alkenes and ketones in a new carbonyl olefination reaction.

    • Elisabeth T. Hennessy
    • Eric N. Jacobsen
    News & Views
  • A quantitative understanding of the functional landscape of a biochemical circuit can reveal the design rules required to optimize the circuit. Now, a high-throughput droplet-based microfluidic platform has been developed which enables high-resolution mapping of bifurcation diagrams for two nonlinear DNA networks.

    • Fei Wang
    • Chunhai Fan
    News & Views
  • The calcination of metal–organic framework (MOF) precursors is promising for the preparation of nanoscale carbon materials, but the resulting morphologies have remained limited. Now, controlling the growth of precursor MOFs has enabled 1D carbon nanorods to be fabricated — these can then be readily unravelled into 2D graphene nanoribbons.

    • Jing Tang
    • Yusuke Yamauchi
    News & Views
  • Combining conventional transition-metal oxidation with oxygen oxidation in 'lithium-excess' materials is a recently discovered route to improving the capacity of lithium-ion batteries. Now two studies, one experimental and one theoretical, have investigated the processes, states and structures involved.

    • Claude Delmas
    News & Views
  • Nitric oxide (NO) has important functions in all forms of life and serves, for example, as a signalling molecule in mammals. Now, two complementary studies have uncovered how NO binds to blue copper proteins. This research suggests a mechanism by which NO could regulate the activity of blue copper proteins involved in denitrification.

    • Subhra Samanta
    • Nicolai Lehnert
    News & Views
  • Self-sorting events in supramolecular assembly lead to complex systems that are attractive for the design of functional materials, but have remained difficult to understand and control. Now, the growth of self-sorted supramolecular nanofibres has been elucidated by direct imaging through real-time in situ confocal microscopy.

    • Emily R. Draper
    • Dave J. Adams
    News & Views
  • The critical step in water splitting is the formation of a peroxo bond; the mechanism, thought to involve oxyl radical formation, remains elusive. Now, experiments reveal a distinct bond vibration directly connected to an oxyl radical that is simultaneously coupled to both the semiconductor electronic states and the motion of the surrounding water.

    • Heather Vanselous
    • Poul B. Petersen
    News & Views
  • The low-complexity-protein, liquid phases of membraneless organelles have now been established to selectively partition biomolecules. The specialized microenvironment that they provide differs chemically from the surrounding medium and enables specific nucleic-acid remodelling reactions.

    • James Shorter
    News & Views
  • Early theories suggested the possibility of atomically thin boron layers, but electron-deficient boron favours multicentre bonds and assembles into various polymorphs, making the synthesis of such layers challenging. Now, in two independent experiments, the deposition of atomic boron has offered this long-sought material on a silver platter.

    • Zhuhua Zhang
    • Evgeni S. Penev
    • Boris I. Yakobson
    News & Views
  • Understanding the minute details of CO2 transport is key to finding new technologies that reduce the hazardous levels of CO2 in our atmosphere. Now, the observation that the transport of CO2 in molten calcium carbonate occurs faster than standard molecular diffusion brings us one step closer.

    • Barbara Kirchner
    • Barbara Intemann
    News & Views
  • A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.

    • Lucy Clark
    • Philip Lightfoot
    News & Views
  • A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked — rather than being encoded in the covalent connectivity of the components themselves — has been shown to act as an enantioselective organocatalyst.

    • Stephen M. Goldup
    News & Views
  • A new click-style reaction based on a strain-release amination strategy has been developed. This approach can be used to append small, strained ring systems onto a core scaffold.

    • John A. Milligan
    • Peter Wipf
    News & Views
  • Expanding the range of amino acids polymerizable by ribosomes could enable new functionalities to be added to polypeptides. Now, the genetic code has been reprogrammed using a reconstituted in vitro translation system to enable synthesis of unnatural peptides with unmatched flexibility.

    • Michael C. Jewett
    • Vincent Noireaux
    News & Views
  • Controlling interfaces between transition-metal oxides and dissimilar structures is crucial for practical applications, yet has remained a quandary. Now, a coherent interface that bridges a perovskite and a fluorite structure has been formed using judiciously chosen metal cations.

    • Kenneth R. Poeppelmeier
    • James M. Rondinelli
    News & Views
  • The properties of metal–organic frameworks — promising for a myriad of applications — can be commonly tuned by judicious choice of the building blocks used to prepare the material. Now, simply downsizing a rigid, non-porous MOF to a thin film has been shown to endow it with dynamic, gate-opening-type guest uptake behaviour.

    • Christopher J. Sumby
    News & Views