Review Articles

Filter By:

Article Type
  • Mesoporous materials are finding increasing uses in energy conversion and storage devices. This Review highlights recent developments in the synthesis of mesoporous materials and their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.

    • Wei Li
    • Jun Liu
    • Dongyuan Zhao
    Review Article
  • Recent research into semiconductor nanowire lasers has resulted in the advent of new materials, a broader wavelength selection and effective electrical pumping schemes, thereby bringing these nanoscale lasers much closer to application in fields like communications, computing, sensing and imaging.

    • Samuel W. Eaton
    • Anthony Fu
    • Peidong Yang
    Review Article
  • Assisted by rationally designed novel plasmonic nanostructures, surface-enhanced Raman spectroscopy has presented a new generation of analytical tools (that is, tip-enhanced Raman spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy) with an extremely high surface sensitivity, spatial resolution and broad application for materials science and technology.

    • Song-Yuan Ding
    • Jun Yi
    • Zhong-Qun Tian
    Review Article
  • The polymer materials of the twenty-first century will be complex chemical systems that can respond and adapt to their environment. Such materials can be attained by synthesizing precision macromolecules with controlled architectures, and by mastering polymer interactions and self-organization.

    • Jean-François Lutz
    • Jean-Marie Lehn
    • Krzysztof Matyjaszewski
    Review Article
  • Membranes have an increasingly important role in alleviating water scarcity and the pollution of aquatic environments. Promising molecular-level design approaches are reviewed for membrane materials, focusing on how these materials address the urgent requirements of water treatment applications.

    • Jay R. Werber
    • Chinedum O. Osuji
    • Menachem Elimelech
    Review Article
  • Post-lithium-ion batteries are reviewed with a focus on their operating principles, advantages and the challenges that they face. The volumetric energy density of each battery is examined using a commercial pouch-cell configuration to evaluate its practical significance and identify appropriate research directions.

    • Jang Wook Choi
    • Doron Aurbach
    Review Article
  • The incorporation of structural defects, in particular of interfaces, into crystalline lattices results in enhanced material properties. In this Review, different types of boundaries and interfaces are discussed, including high- and low-angle grain boundaries, twin boundaries, nanotwinned and nanolaminated structures, and gradient nanostructures.

    • K. Lu
    Review Article
  • New catalysis materials are required for electrochemical reactions that are vital for clean energy production and environmental remediation. The use of nanostructured materials for improving catalytic reactivity is analysed in this Review in the context of model reactions of O2 reduction, CO2 electroreduction and ethanol oxidation.

    • Hemma Mistry
    • Ana Sofia Varela
    • Beatriz Roldan Cuenya
    Review Article
  • Iron-based superconductors display high transition temperatures. The physics behind the unconventional superconductivity of these systems can be investigated by taking into consideration the observed strong electronic correlations and bad-metal behaviour, the nature of their magnetic properties, and the presence of electronic nematicity and of quantum criticalities.

    • Qimiao Si
    • Rong Yu
    • Elihu Abrahams
    Review Article
  • The mechanical performance of hard biological materials is not only governed by their composition and architecture but also by the interfaces they contain. This Review discusses the composition, structure and mechanics of key interfaces within nacre, bone and wood, and their role in deformation and toughness.

    • Francois Barthelat
    • Zhen Yin
    • Markus J. Buehler
    Review Article
  • Grafting DNA strands onto colloidal nano- and microparticles endows them with sequence-specific interactions. This Review explains how these interactions emerge from reactions between the strands and how the DNA sequences can add information that tells the particles how to self-assemble.

    • W. Benjamin Rogers
    • William M. Shih
    • Vinothan N. Manoharan
    Review Article
  • Single-molecule electronic junctions comprise three components: anchors, electrodes and the molecular bridge. This Review surveys the relationship between the chemical structures and the electronic properties of each component, and extends the discussion to switching functions and the phenomenon of quantum interference.

    • Timothy A. Su
    • Madhav Neupane
    • Colin Nuckolls
    Review Article
  • Acoustic metamaterials can be used manipulate sound waves with a high degree of control. Their applications include acoustic imaging and cloaking. This Review outlines the designs and properties of these materials, discussing transformation acoustics theory, anisotropic materials and active acoustic metamaterials.

    • Steven A. Cummer
    • Johan Christensen
    • Andrea Alù
    Review Article
  • Metal–organic frameworks (MOFs) have shown promise in a broad range of applications, including catalysis. In this Review, the chemical, thermal and mechanical stabilities of MOFs, in particular with catalytic uses in mind, are discussed.

    • Ashlee J. Howarth
    • Yangyang Liu
    • Omar K. Farha
    Review Article
  • Tuning the reversible chemistries in hydrogels makes it possible to mimic the dynamic nature of the extracellular matrix. Various chemistries have been incorporated to regulate cell spreading, biochemical presentation and matrix mechanics.

    • Adrianne M. Rosales
    • Kristi S. Anseth
    Review Article
  • Colloidal crystals composed of isotropic spheres are powerful model systems for the studies of crystallization, melting and solid–solid transitions at the single-particle level. Tunable, anisotropic or active particles provide greater opportunities to study crystal assembly and phase transitions.

    • Bo Li
    • Di Zhou
    • Yilong Han
    Review Article
  • Photoelectrochemical (PEC) devices offer the promise of efficient artificial photosynthesis. In this Review, recently developed light-harvesting materials for PEC application are scrutinized with respect to their atomic constitution, electronic structure and potential for practical performance in PEC cells.

    • Kevin Sivula
    • Roel van de Krol
    Review Article
  • Ionic liquids and their solid-state analogues, organic ionic plastic crystals, have recently emerged as important materials for renewable energy applications. This Review highlights recent advances in the synthesis of these materials and their application as electrolytes for batteries, capacitors, photovoltaics, fuel cells and CO2 reduction.

    • Douglas R. MacFarlane
    • Maria Forsyth
    • Jie Zhang
    Review Article
  • Conventional synthesis of nanocarbons, such as graphene, fullerenes and carbon nanotubes, yields mixtures of molecules with varying structures. However, harnessing the full potential of these materials demands atomically precise synthesis methods. Recent advances using organic chemistry are discussed in this Review.

    • Yasutomo Segawa
    • Hideto Ito
    • Kenichiro Itami
    Review Article
  • Density functional theory has become an indispensable tool in the design of new materials. This Review details the principles of computational materials design, highlighting examples of the successful prediction and subsequent experimental verification of materials for energy harvesting, conversion and storage.

    • Anubhav Jain
    • Yongwoo Shin
    • Kristin A. Persson
    Review Article