News & Comment

Filter By:

Year
  • Criegee intermediates are reactive intermediates formed in Earth’s atmosphere through ozonolysis of alkenes. Here the authors outline the fundamental chemistry that influences their highly conformer- and substituent-dependent unimolecular and bimolecular reactivity, and discuss open questions of fundamental and atmospheric interest.

    • Rebecca L. Caravan
    • Michael F. Vansco
    • Marsha I. Lester
    CommentOpen Access
  • Contact freezing of water is a very fast and common process that is still not well understood due to challenges in probing this microscopic phenomenon. Now, molecular dynamics simulations help to explain experimental data of contact freezing, showing a connection between water’s suspected propensity to undergo surface freezing and the kinetic enhancement during contact nucleation.

    • Teresa S. Ortner
    Research HighlightOpen Access
  • Molecular replication could offer insight into the fundamentals of evolution, but achieving controlled mutation is difficult. Now, a synthetic replicator that allows for simple control over its mutation rate has been reported.

    • Andrew J. Bissette
    Research HighlightOpen Access
  • Nanoscience has progressed tremendously in the exploration of new phenomena not seen in bulk materials, however, the transition between nanoscale and bulk properties is not yet fully understood. Here the authors identify and discuss remaining open questions that call for future efforts.

    • Rongchao Jin
    • Tatsuya Higaki
    CommentOpen Access
  • Carbon mineralization is a versatile and thermodynamically downhill process that can be harnessed for capturing, storing, and utilizing CO2 to synthesize products with enhanced properties. Here the author discusses the advances in and challenges of carbon mineralization, and concludes that tuning the chemical interactions involved will allow us to unlock its potential for advancing low carbon energy and resource conversion pathways.

    • Greeshma Gadikota
    CommentOpen Access
  • The chemical space of prebiotic chemistry is extremely large, while extant biochemistry uses only a few thousand interconnected molecules. Here we discuss how the connection between these two regimes can be investigated, and explore major outstanding questions in the origin of life.

    • Christopher J. Butch
    • Markus Meringer
    • H. James Cleaves II
    CommentOpen Access