Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetics of oral antidiabetes drugs: evidence for diverse signals at the IRS1 locus

Abstract

To investigate the role of IRS1 locus on failure to oral antidiabetes drugs (OADs) we genotyped single-nucleotide polymorphisms (SNPs), rs2943641, rs7578326 (tagging all SNPs genome-wide associated with type 2 diabetes (T2D) and related traits at this locus) and rs1801278 (that is, the loss-of-function IRS1 G972R amino acid substitution) in 2662 patients with T2D. Although no association with OAD failure was observed for rs2943641 and rs7578326 SNPs (odds ratio (OR): 1.04, 95% confidence interval (CI): 0.93–1.16 and OR: 0.97, 95% CI: 0.87–1.09 respectively), a significant association was observed for rs1801278 (OR: 1.34, 95% CI: 1.08–1.66). When meta-analyzed with previous published data, an allelic OR of 1.41 (1.15–1.72; P=0.001) was obtained, so that homozygous R972R individuals have >80% higher risk of failing to OADs as compared with their G972G counterparts. In all, though further studies are needed for confirming this finding, our present data point to IRS1 rs1801278 as a potential biomarker for pursuing the goal of stratified medicine in the field of antihyperglycemic treatment in T2D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2197–2223.

    Article  PubMed  Google Scholar 

  2. Whiting DR, Guariguata L, Weil C, Shaw J . IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94: 311–321.

    Article  PubMed  Google Scholar 

  3. Smith RJ, Nathan DM, Arslanian SA, Groop L, Rizza RA, Rotter JI . Individualizing therapies in type 2 diabetes mellitus based on patient characteristics: what we know and what we need to know. J Clin Endocrinol Metab 2010; 95: 1566–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giugliano D, Maiorino MI, Bellastella G, Esposito K . Comment on American Diabetes Association. Approaches to Glycemic Treatment. Sec. 7. In Standards of Medical Care in Diabetes-2016. Diabetes Care 2016;39(Suppl. 1):S52-S59. Diabetes Care 2016; 39: S86–S87.

    Article  Google Scholar 

  5. Herman WH, Kalyani RR, Wexler DJ, Matthews DR, Inzucchi SE . Response to Comment on American Diabetes Association. Approaches to Glycemic Treatment. Sec. 7. In Standards of Medical Care in Diabetes-2016. Diabetes Care 2016;39(Suppl. 1):S52-S59. Diabetes Care 2016; 39: S88–S89.

    Article  Google Scholar 

  6. Raz I, Riddle MC, Rosenstock J, Buse JB, Inzucchi SE, Home PD et al. Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care Editors' Expert Forum. Diabetes Care 2013; 36: 1779–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mannino GC, Sesti G . Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol Diagn Ther 2012; 16: 285–302.

    Article  CAS  PubMed  Google Scholar 

  8. Prudente S, Morini E, Lucchesi D, Lamacchia O, Bailetti D, Mercuri L et al. IRS1 G972R missense polymorphism is associated with failure to oral antidiabetes drugs in white patients with type 2 diabetes from Italy. Diabetes 2014; 63: 3135–3140.

    Article  PubMed  Google Scholar 

  9. Almind K, Inoue G, Pedersen O, Kahn CR . A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest 1996; 97: 2569–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hribal ML, Federici M, Porzio O, Lauro D, Borboni P, Accili D et al. The Gly—>Arg972 amino acid polymorphism in insulin receptor substrate-1 affects glucose metabolism in skeletal muscle cells. J Clin Endocrinol Metab 2000; 85: 2004–2013.

    CAS  PubMed  Google Scholar 

  11. Hribal ML, Tornei F, Pujol A, Menghini R, Barcaroli D, Lauro D et al. Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion. J Cell Mol Med 2008; 12: 2096–2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clausen JO, Hansen T, Bjørbaek C, Echwald SM, Urhammer SA, Rasmussen S et al. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1. Lancet 1995; 346: 397–402.

    Article  CAS  PubMed  Google Scholar 

  13. Marini MA, Frontoni S, Mineo D, Bracaglia D, Cardellini M, De Nicolais P et al. The Arg972 variant in insulin receptor substrate-1 is associated with an atherogenic profile in offspring of type 2 diabetic patients. J Clin Endocrinol Metab 2003; 88: 3368–3371.

    Article  CAS  PubMed  Google Scholar 

  14. Kilpeläinen TO, Zillikens MC, Stančákova A, Finucane FM, Ried JS, Langenberg C et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011; 43: 753–760.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012; 44: 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proença C et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009; 41: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  17. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357: 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010; 466: 707–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42: 579–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 2012; 8: e1002695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 2014; 46: 234–244.

    Article  CAS  PubMed  Google Scholar 

  22. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013; 45: 1274–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Cosmo S, Prudente S, Lamacchia O, Lucchesi D, Shah H, Mendonca C et al. The 9p21 coronary artery disease locus and kidney dysfunction in patients with Type 2 diabetes mellitus. Nephrol Dial Transplant 2012; 27: 4411–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paladini F, Adinolfi V, Cocco E, Ciociola E, Tamburrano G, Cascino I et al. Gender-dependent association of type 2 diabetes with the vasoactive intestinal peptide receptor 1. Gene 2012; 493: 278–281.

    Article  CAS  PubMed  Google Scholar 

  25. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  26. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  27. Olkin I, Sampson A . Comparison of meta-analysis versus analysis of variance of individual patient data. Biometrics 1998; 54: 317–322.

    Article  CAS  PubMed  Google Scholar 

  28. Sesti G, Marini MA, Cardellini M, Sciacqua A, Frontoni S, Andreozzi F et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care 2004; 27: 1394–1398.

    Article  CAS  PubMed  Google Scholar 

  29. Morini E, Prudente S, Succurro E, Chandalia M, Zhang YY, Mammarella S et al. IRS1 G972R polymorphism and type 2 diabetes: a paradigm for the difficult ascertainment of the contribution to disease susceptibility of 'low-frequency-low-risk' variants. Diabetologia 2009; 52: 1852–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stumvoll M, Fritsche A, Volk A, Stefan N, Madaus A, Maerker E et al. The Gly972Arg polymorphism in the insulin receptor substrate-1 gene contributes to the variation in insulin secretion in normal glucose-tolerant humans. Diabetes 2001; 50: 882–885.

    Article  CAS  PubMed  Google Scholar 

  31. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R . Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 2001; 15: 2099–2111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Italian Ministry of Health (Ricerca Corrente 2015 and 2016 to S Prudente, R Di Paola and V Trischitta), by the ‘5 × 1000’ voluntary contribution to IRCCS Casa Sollievo della Sofferenza, by the Italian Ministry of University and Research (PRIN 2012 and 2015 to V Trischitta), by Fondazione Roma (‘Biomedical Research: non-communicable diseases 2013 Grant’ to V Trischitta) and by EC (European project FP-7 MEDIGENE 279171 to V Trischitta).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Prudente or V Trischitta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudente, S., Di Paola, R., Pezzilli, S. et al. Pharmacogenetics of oral antidiabetes drugs: evidence for diverse signals at the IRS1 locus. Pharmacogenomics J 18, 431–435 (2018). https://doi.org/10.1038/tpj.2017.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2017.32

This article is cited by

Search

Quick links