Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Global patterns of variation in allele and haplotype frequencies and linkage disequilibrium across the CYP2E1 gene

Abstract

Cytochrome P450 2E1, gene symbol CYP2E1, is one of a family of enzymes with a central role in activating and detoxifying xenobiotics and endogenous compounds. Genetic variation at this gene has been reported in different human populations, and some association studies have reported increased risk for cancers and other diseases. To the best of our knowledge, multi-single-nucleotide polymorphism haplotypes and linkage disequilibrium (LD) have not been systematically studied for CYP2E1 in multiple populations. Haplotypes can greatly increase the power both to identify patterns of genetic variation relevant for gene expression as well as to detect disease-related susceptibility mutations. We present frequency and LD data and analyses for 11 polymorphisms and their haplotypes that we have studied on over 2600 individuals from 50 human population samples representing the major geographical regions of the world. The diverse patterns of haplotype variation found in the different populations we have studied show that ethnicity may be an important variable helping to explain inconsistencies that have been reported by association studies. More studies clearly are needed of the variants we have studied, especially those in the 5′ region, such as the variable number of tandem repeats, as well as studies of additional polymorphisms known for this gene to establish evidence relating any systematic differences in gene expression that exist to the haplotypes at this gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CYP2E1 :

cytochrome P450, family 2, subfamily E, polypeptide 1

LD:

linkage disequilibrium

PCR:

polymerase chain reaction

SNP:

single-nucleotide polymorphism

UID:

unique identifier

VNTR:

variable number of tandem repeats

References

  1. Kidd KK, Morar B, Castiglione CM, Zhao H, Pakstis AJ, Speed WC et al. A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus. Hum Genet 1998; 103: 211–227.

    Article  CAS  PubMed  Google Scholar 

  2. Kidd JR, Pakstis AJ, Zhao H, Lu RB, Okonofua FE, Odunsi A et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am J Hum Genet 2000; 66: 1882–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sawyer SL, Mukherjee N, Pakstis AJ, Feuk L, Kidd JR, Brookes AJ et al. Linkage disequilibrium patterns vary substantially among populations. Eur J Hum Genet 2005; 13: 677–686.

    Article  CAS  PubMed  Google Scholar 

  4. Frisse L, Hudson RR, Bartoszewicz A, Wall JD, Donfack J, Di Rienzo A . Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am J Hum Genet 2001; 69: 831–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukherjee N, Kidd KK, Pakstis AJ, Speed WC, Li H, Tarnok Z et al. The complex global pattern of genetic variation and linkage disequilibrium at catechol-O-methyl transferase (COMT). Mol Psychiatry 2008, advance online publication, 24 June 2008; doi: 10.1038/mp.2008.64.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Han Y, Gu S, Oota H, Osier MV, Pakstis AJ, Speed WC et al. Evidence of positive selection on a class I ADH locus. Am J Hum Genet 2007; 80: 441–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tishkoff SA, Goldman A, Calafell F, Speed WC, Deinard AS, Bonne-Tamir B et al. A global haplotype analysis of the myotonic dystrophy locus: implications for the evolution of modern humans and for the origin of myotonic dystrophy mutations. Am J Hum Genet 1998; 62: 1389–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans DM, Cardon LR . Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 2004; 75: 687–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gardner M, González-Neira A, Lao O, Calafell F, Bertranpetit J, Comas D . Extreme population differences across Neuregulin 1 gene, with implications for association studies. Mol Psychiatry 2006; 11: 66–75.

    Article  CAS  PubMed  Google Scholar 

  10. Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A . Effect of antifungal drugs on Cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull 2005; 28: 1813–1816.

    Article  CAS  PubMed  Google Scholar 

  11. Peterson TC, Peterson MR, Wornell PA, Blanchard MG, Gonzalez FJ . Role of CYP1A2 and CYP2E1 in the pentoxifylline ciprofloxacin drug interaction. Biochem Pharmacol 2004; 68: 395–402.

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez FJ, Yu AM . Cytochrome P450 and xenobiotic receptor humanized mice. Ann Rev Pharmacol Toxicol 2006; 46: 41–64.

    Article  CAS  Google Scholar 

  13. Hayashi S, Watanabe J, Nakachi K, Kawajiri K . Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem (Tokyo) 1991; 110: 407–411.

    Article  CAS  Google Scholar 

  14. Kim RB, Yamazaki H, Chiba K, O'Shea D, Mimura M, Guengerich FP et al. In vivo and in vitro characterization of CYP2E1 activity in Japanese and Caucasians. J Pharmacol Exp Ther 1996; 279: 4–11.

    CAS  PubMed  Google Scholar 

  15. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 2001; 10: 1239–1248.

    CAS  PubMed  Google Scholar 

  16. Danko IM, Chaschin NA . Association of CYP2E1 gene polymorphism with predisposition to cancer development. Exp Oncol 2005; 27: 248–256.

    CAS  PubMed  Google Scholar 

  17. Song BJ . Ethanol-inducible cytochrome P450 (CYP2E1): biochemistry, molecular biology and clinical relevance: 1996 update. Alcohol Clin Exp Res 1996; 20 (Suppl): 138A–146A.

    Article  CAS  PubMed  Google Scholar 

  18. Iwahashi HK, Ameno S, Ameno K, Okada N, Kinoshita H, Sakae Y et al. Relationship between alcoholism and CYP2E1 C/D polymorphism. Neuropsychobiology 1998; 38: 218–221.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen TT, Murphy NP, Austin CM . Amplification of multiple copies of mitochondrial Cytochrome b gene fragments in the Australian freshwater crayfish, Cherax destructor Clark (Parastacidae: Decapoda). Anim Genet 2002; 33: 304–308.

    Article  CAS  PubMed  Google Scholar 

  20. Howard LA, Ahluwalia JS, Lin SK, Sellers EM, Tyndale RF . CYP2E1*1D regulatory polymorphism: association with alcohol and nicotine dependence. Pharmacogenetics 2003; 13: 321–328. [erratum in Pharmacogenetics 2003; 13: 441–442].

    Article  CAS  PubMed  Google Scholar 

  21. Lee HS, Yoon JH, Kamimura S, Iwata K, Wataname H, Kim CY . Lack of association of cytochrome P4502 E1 genetic polymorphisms with the risk of human hepatocellular carcinoma. Int J Cancer 1997; 71: 737–740.

    Article  CAS  PubMed  Google Scholar 

  22. Morita S, Yano M, Shiozaki H, Tsujinaka T, Ebisui C, Morimoto T et al. eCYP1A1, CYP2E1 and GSTM1 polymorphisms are not associated with susceptibility to squamous-cell carcinoma of the esophagus. Int J Cancer 1997; 71: 192–195.

    Article  CAS  PubMed  Google Scholar 

  23. Powell H, Kitteringham NR, Pirmohamed M, Smith DA, Park BK . Expression of cytochrome P4502E1 in human liver: assessment by mRNA, genotype and phenotype. Pharmacogenetics 1998; 8: 411–421.

    Article  CAS  PubMed  Google Scholar 

  24. Wong NA, Rae F, Simpson KJ, Murray GD, Harrison DJ . Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis. Mol Pathol 2000; 53: 88–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kidd KK, Pakstis AJ, Speed WC, Kidd JR . Understanding human DNA sequence variation. J Hered 2004; 95: 406–420.

    Article  CAS  PubMed  Google Scholar 

  26. Marsh S . Pharmacogenetics: global clinical markers. Pharmacogenomics 2008; 9: 371–373.

    Article  CAS  PubMed  Google Scholar 

  27. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu Y, Hakkola J, Oscarson M, Ingelman-Sundberg M . Structural and functional characterization of the 5′-flanking region of the rat and human cytochrome P450 2E1 genes: identification of a polymorphic repeat in the human gene. Biochem Biophys Res Commun 1999; 263: 286–293.

    Article  CAS  PubMed  Google Scholar 

  30. Hawley ME, Kidd KK . HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered 1995; 86: 409–411.

    Article  CAS  PubMed  Google Scholar 

  31. Devlin B, Risch N . A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995; 29: 311–322.

    Article  CAS  PubMed  Google Scholar 

  32. Lewontin RC . The interaction of selection and linkage. Ii. Optimum models. Genetics 1964; 50: 757–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao H, Pakstis AJ, Kidd JR, Kidd KK . Assessing linkage disequilibrium in a complex genetic system. I. Overall deviation from random association. Ann Hum Genet 1999; 63: 167–179.

    Article  CAS  PubMed  Google Scholar 

  34. Gu S, Pakstis AJ, Kidd KK . HAPLOT: a graphical comparison of haplotype blocks, tagSNP sets and SNP variation for multiple populations. Bioinformatics 2005; 21: 3938–3939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded, in part, by National Institute of Health grants GM057672 and AA009379 to Kenneth K Kidd. None of the authors has any conflicts of interest related to the data presented here. We thank all the colleagues who helped us assemble the population samples. Special thanks are due the many hundreds of individuals from these populations who volunteered to give blood samples for studies such as this.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K K Kidd.

Additional information

Duality of interest

None declared.

Electronic databases cited

ALFRED, The ALlele FREquency Databse; http://alfred.med.yale.edu; PharmGKB, The Pharmacogenetics and Pharmacogenomics Knowledge Base, http://www.PharmGKB.org

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal Web site (http://www.nature.com/tpj)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MY., Mukherjee, N., Pakstis, A. et al. Global patterns of variation in allele and haplotype frequencies and linkage disequilibrium across the CYP2E1 gene. Pharmacogenomics J 8, 349–356 (2008). https://doi.org/10.1038/tpj.2008.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2008.9

Keywords

This article is cited by

Search

Quick links