Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous time-resolved inorganic haloamine measurements enable analysis of disinfectant degradation kinetics and by-product formation

Abstract

We demonstrate the application of proton transfer time-of-flight mass spectrometry (PTR-TOF-MS) in monitoring the kinetics of disinfectant decay in water with a sensitivity one to three orders of magnitude greater than other analytical methods. Chemical disinfection inactivates pathogens during water treatment and prevents regrowth as water is conveyed in distribution system pipes, but it also causes formation of toxic disinfection by-products. Analytical limits have hindered kinetic models, which aid in ensuring water quality and protecting public health by predicting disinfection by-products formation. PTR-TOF-MS, designed for measuring gas phase concentrations of organic compounds, was able to simultaneously monitor aqueous concentrations of five inorganic haloamines relevant to chloramine disinfection under drinking water relevant concentrations. This novel application to aqueous analytes opens a new range of applications for PTR-TOF-MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative PTR-TOF-MS mass spectra for each haloamine.
Fig. 2: PTR-TOF-MS signal counts per second NH2Cl of seven replicate 2 µM standards.
Fig. 3: Interference from dihaloamines on monohaloamines.
Fig. 4: Measured concentrations of total haloamines and monochloramine.
Fig. 5: Comparison of model to measured haloamine concentrations during the kinetic experiment using PTR-TOF-MS.

Similar content being viewed by others

Data availability

All data supporting the finding of this study are available within this article and its Supplementary Information. The data that support the findings of this study are available via figshare at https://doi.org/10.6084/m9.figshare.25302220 (ref. 49).

References

  1. Rosario-ortiz, B. F. et al. How do you like your tap water? Science 351, 912–914 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Sedlak, D. L. & von Gunten, U. The chlorine dilemma. Science 331, 42 LP–43 (2011).

    Article  Google Scholar 

  3. Allaire, M., Wu, H. & Lall, U. National trends in drinking water quality violations. Proc. Natl Acad. Sci. USA 115, 2078–2083 (2018).

  4. 2017 Water Utility Disinfection Survey Report (American Water Works Association, 2018).

  5. Monochloramine in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (World Health Organization, 2004).

  6. Valentine, R. L. & Jafvert, C. T. Reaction scheme for the chlorination of ammoniacal water. Environ. Sci. Technol. 26, 577–586 (1992).

    Article  Google Scholar 

  7. Duirk, S. E. & Valentine, R. L. Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter. Water Res. 40, 2667–2674 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Amy, G., Siddigui, M., Zhai, W., DeBroux, J. & Odem, W. Survey of Bromide in Drinking Water and Impacts on DBP Formation (Water Research Foundation, 1994).

  9. Allen, J. M. et al. Drivers of disinfection byproduct cytotoxicity in U.S. drinking water: should other DBPs be considered for regulation? Environ. Sci. Technol. 56, 392–402 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich, A. M. & Burlingame, G. A. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environ. Sci. Technol. 49, 708–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D. & Abad, J. D. Impact of shale gas development on regional water quality impact of shale gas development. Science 340, 6134 (2013).

    Article  Google Scholar 

  12. Kirmeyer, G., Martel, K., Thompson, G. & Radder, L. Optimizing Chloramine Treatment (Water Research Foundation, 2004).

  13. Wahman, D. G., Speitel, G. E. & Katz, L. E. Bromamine decomposition revisited: a holistic approach for analyzing acid and base catalysis kinetics. Environ. Sci. Technol. 51, 13205–13215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trofe, T. W., Inman, G. W. & Donald Johnson, J. Kinetics of monochloramine decomposition in the presence of bromide. Environ. Sci. Technol. 14, 544–549 (1980).

    Article  CAS  Google Scholar 

  15. Pope, P. G. & Speitel, G. E. Reactivity of bromine-substituted haloamines in forming haloacetic acids. ACS Symp. Ser. 995, 182–197 (2008).

    Article  CAS  Google Scholar 

  16. Kinani, S., Roumiguières, A. & Bouchonnet, S. A critical review on chemical speciation of chlorine-produced oxidants (CPOs) in seawater. Part 1: chlorine chemistry in seawater and its consequences in terms of biocidal effectiveness and environmental impact. Crit. Rev. Anal. Chem. https://doi.org/10.1080/10408347.2022.2139590 (2022).

  17. Kinani, S., Roumiguières, A. & Bouchonnet, S. A Critical review on chemical speciation of chlorine-produced oxidants (CPOs) in seawater. Part 2: sampling, sample preparation and non-chromatographic and mass spectrometric-based methods. Crit. Rev. Anal. Chem. https://doi.org/10.1080/10408347.2022.2135984 (2022).

  18. Roumiguières, A., Bouchonnet, S. & Kinani, S. A critical review on chemical speciation of chlorine-produced oxidants in seawater. Part 3: chromatographic- and mass spectrometric-based methodologies. Crit. Rev. Anal. Chem. https://doi.org/10.1080/10408347.2023.2220129 (2023).

  19. Brodfuehrer, S. H., Wahman, D. G., Alsulaili, A., Speitel, G. E. & Katz, L. E. Role of carbonate species on general acid catalysis of bromide oxidation by hypochlorous acid (HOCl) and oxidation by molecular chlorine (Cl2). Environ. Sci. Technol. 54, 16186–16194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luh, J. & Mariñas, B. J. Kinetics of bromochloramine formation and decomposition. Environ. Sci. Technol. 48, 2843–2852 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Method 10020, Chloramine (Mono) and Nitrogen, Free Ammonia (Hach Company, 2019).

  22. Method 10070, Chlorine, Free and Total, High Range (Hach Company, 2018).

  23. Pope, P. G. Haloacetic Acid Formation During Chloramination: Role of Environmental Conditions, Kinetics, and Haloamine Chemistry (University of Texas at Austin, 2006).

  24. Hu, W., Lauritsen, F. R. & Allard, S. Identification and quantification of chloramines, bromamines and bromochloramine by membrane introduction mass spectrometry (MIMS). Sci. Total Environ. 751, 142303 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Blake, R. S., Monks, P. S. & Ellis, A. M. Proton-transfer reaction mass spectrometry. Chem. Rev. 109, 861–896 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, J. M. Introduction. in Mass Spectrometry 1–56 (Pan Stanford Publishing Pte., 2018).

  27. Roumiguières, A., Bouchonnet, S. & Kinani, S. Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 413, 885–900 (2021).

    Article  PubMed  Google Scholar 

  28. Wu, T. et al. Real-time measurements of gas-phase trichloramine (NCl3) in an indoor aquatic center. Environ. Sci. Technol. 55, 8097–8107 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Arata, C. et al. Volatile organic compound emissions during HOMEChem. Indoor Air 31, 2099–2117 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Bhattacharyya, N. et al. Bleach emissions interact substantially with surgical and KN95 mask surfaces. Environ. Sci. Technol. 57, 6589–6598 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Senthilmohan, S. T. et al. Detection of monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry and their relevance as breath markers. Rapid Commun. Mass Spectrom. 22, 677–681 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Shrivastava, A. & Gupta, V. B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2, 21–25 (2011).

    Article  Google Scholar 

  33. Mensah, A. T., Berne, F., Allard, S., Soreau, S. & Gallard, H. Kinetic modelling of the bromine-ammonia system: formation and decomposition of bromamines. Water Res. 224, 119058 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Demeestere, K., Dewulf, J., De Witte, B. & Van Langenhove, H. Sample preparation for the analysis of volatile organic compounds in air and water matrices. J. Chromatogr. A 1153, 130–144 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Furman, C. S. & Margerum, D. W. Mechanism of chlorine dioxide and chlorate ion formation from the reaction of hypobromous acid and chlorite ion. Inorg. Chem. 37, 4321–4327 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Troy, R. C. & Margerum, D. W. Non-metal redox kinetics: hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate. Inorg. Chem. 30, 3538–3543 (1991).

    Article  CAS  Google Scholar 

  37. Kumar, K., Day, R. A. & Margerum, D. W. Atom-transfer redox kinetics: general-acid-assisted oxidation of iodide by chloramines and hypochlorite. Inorg. Chem. 25, 4344–4350 (1986).

    Article  CAS  Google Scholar 

  38. Lei, H., Mariñas, B. J. & Minear, R. A. Bromamine decomposition kinetics in aqueous solutions. Environ. Sci. Technol. 38, 2111–2119 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Brodfuehrer, S. H., Goodman, J. B., Wahman, D. G., Speitel, G. E. & Katz, L. E. Apparent reactivity of bromine in bromochloramine depends on synthesis method: implication bromine chloride and molecular bromine as important bromine species. J. Environ. Eng. 148, 12 (2022).

    Article  Google Scholar 

  40. de Gouw, J. & Warneke, C. Measurements of volatile organic compounds in the earth’s atmosphere using proton‐transfer‐reaction mass spectrometry. Mass Spectrom. Rev. 26, 223–257 (2007).

    Article  PubMed  Google Scholar 

  41. Warneke, C., van der Veen, C., Luxembourg, S., de Gouw, J. A. & Kok, A. Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. Int. J. Mass Spectrom. 207, 167–182 (2001).

    Article  CAS  Google Scholar 

  42. Krechmer, J. et al. Evaluation of a new reagent-ion source and focusing ion–molecule reactor for use in proton-transfer-reaction mass spectrometry. Anal. Chem. 90, 12011–12018 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Blomdahl, D. C. Optimization of Volatile Organic Compound Sensitivity of Vocus PTR-ToF-MS for Quantifying Disinfection Byproducts (Univ. Texas at Austin, 2021).

  44. Riva, M. et al. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmos. Meas. Tech. 12, 2403–2421 (2019).

    Article  CAS  Google Scholar 

  45. Hall, E. C. et al. Varying humidity increases emission of volatile nitrogen-containing compounds from building materials. Build. Environ. 205, 108290 (2021).

    Article  Google Scholar 

  46. Sreeram, A., Blomdahl, D., Misztal, P. & Bhasin, A. High resolution chemical fingerprinting and real-time oxidation dynamics of asphalt binders using Vocus Proton Transfer Reaction (PTR-TOF) mass spectrometry. Fuel 320, 123840 (2022).

    Article  CAS  Google Scholar 

  47. Holzinger, R. PTRwid: a new widget tool for processing PTR-TOF-MS data. Atmos. Meas. Tech. 8, 3903–3922 (2015).

    Article  Google Scholar 

  48. AWWA Disinfection Systems Committee. Committee report: disinfection survey, part—alternatives, experiences, and future plans. Am. Water Works Assoc. 100, 110–124 (2008).

    Article  Google Scholar 

  49. Brodfuehrer, S. H. et al. Data for ‘Simultaneous time-resolved inorganic haloamine measurement empowers robust analysis of disinfectant degradation kinetics and by-product formation’. figshare https://doi.org/10.6084/m9.figshare.25302220 (2024).

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant 1953206. The research presented was not performed or funded by EPA and was not subject to EPA’s quality system requirements. The views expressed in this article are those of the author(s) and do not necessarily represent the views or the policies of the US Environmental Protection Agency. Any mention of trade names, manufacturers or products does not imply an endorsement by the United States Government or the US Environmental Protection Agency. EPA and its employees do not endorse any commercial products, services or enterprises.

Author information

Authors and Affiliations

Authors

Contributions

P.K.M. and L.E.K. conceived the research. S.H.B., D.C.B., P.K.M. and L.E.K. designed the research. S.H.B. and D.C.B. performed the experimental work. S.H.B., D.C.B., D.G.W., G.E.S., P.K.M. and L.E.K. contributed to interpreting the data. S.H.B. and D.C.B. wrote the original draft. S.H.B., D.C.B., D.G.W., G.E.S., P.K.M. and L.E.K. contributed to reviewing and editing the manuscript.

Corresponding author

Correspondence to Lynn E. Katz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Said Kinani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–6 and Tables 1–4.

Supplementary Data 1

Mass spectrum of ambient lab air.

Supplementary Data 2

Haloamine standard curves.

Supplementary Data 3

Haloamine specific kinetic experiments.

Supplementary Data 4

Example kinetic data from experiments performed by Luh and Marinas.

Supplementary Data 5

Kinetic experiment with NOM.

Source data

Source Data Fig. 1

Individual haloamine mass spectra.

Source Data Fig. 2

PTR-TOF-MS response following sample introduction.

Source Data Fig. 3

Dihaloamine interferences.

Source Data Fig. 4

Colorimetric methods used during kinetic experiments.

Source Data Fig. 5

Haloamine specific kinetic experiments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodfuehrer, S.H., Blomdahl, D.C., Wahman, D.G. et al. Simultaneous time-resolved inorganic haloamine measurements enable analysis of disinfectant degradation kinetics and by-product formation. Nat Water (2024). https://doi.org/10.1038/s44221-024-00227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-024-00227-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing