Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ring contraction of metallacyclobutadiene to metallacyclopropene driven by π- and σ-aromaticity relay

Abstract

π-Aromaticity is an important driving force in directing the synthesis of aromatic compounds; in contrast, reactions induced by σ-aromaticity are uncommon. Here we report a strategy based on π- and σ-aromaticity relays to realize the structurally defined ring contraction of metallacyclobutadiene to metallacyclopropene. This reaction involves the release of the π-antiaromaticity of metallacyclobutadiene to afford a π-aromatic intermediate, followed by ring reclosure to generate σ-aromatic metallacyclopropene. The ring opening–reclosing mechanism and versatile switching of the aromaticity of the metallacyclic species are supported by experimental results and theoretical calculations. This work demonstrates the importance of aromaticity relay with the successive decrease of energy in reactions and will stimulate efforts in exploiting the vital role of aromaticity in synthetic chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aromaticity relay strategy for ring contraction.
Fig. 2: Synthesis and characterization of precursor 1, [2 + 2] cycloaddition products 2a–2c and ring-contraction products 3a–3c.
Fig. 3: DFT calculations for mechanistic investigation.
Fig. 4: Control experiments and the isolation of key intermediates 4A.
Fig. 5: Aromaticity evaluation of model compounds 2a′, 4A′ and 3a′ by theoretical criteria.
Fig. 6: Chemical stability and optical properties.

Similar content being viewed by others

Data availability

All characterization data and experimental protocols are included in this Article and/or the Supplementary Information. Details of the synthesis and characterization of compounds S-1, S-2, L1, 2a2c, 3a3c, 4A, 5a, 5b and 6a can be found in the Supplementary Information. For general information, synthesis and characterization, see Supplementary Information, pages 2–13. For control experiments, see Supplementary Figs. 13. For crystallographic analysis, see Supplementary Figs. 410 and Supplementary Tables 110. For thermal stability tests, see Supplementary Table 11. For kinetic study, see Supplementary Fig. 11. For the mechanism for the formation of compound 1, see Supplementary Scheme 1. For computational methods, see Supplementary Figs. 1223. For NMR spectra and ESI-MS spectra, see Supplementary Figs. 2470. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under accession numbers 2103042 (2a), 2103166 (3a), 2103167 (3b), 2103168 (3c), 2103171 (4A), 2103169 (5b) and 2103170 (6a). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Schleyer, P. V. R. Introduction: aromaticity. Chem. Rev. 101, 1115–1118 (2001).

    Article  CAS  Google Scholar 

  2. Pagano, J. K. et al. Actinide 2-metallabiphenylenes that satisfy Hückel’s rule. Nature 578, 563–567 (2020).

    Article  CAS  Google Scholar 

  3. Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. A: Hadrons Nucl. 70, 204–286 (1931).

    Article  Google Scholar 

  4. Dewar, M. J. S. Chemical implications of σ conjugation. J. Am. Chem. Soc. 106, 669–682 (1984).

    Article  CAS  Google Scholar 

  5. Havenith, R. W. A., De Proft, F., Fowler, P. W. & Geerlings, P. σ-Aromaticity in H3+ and Li3+: insights from ring-current maps. Chem. Phys. Lett. 407, 391–396 (2005).

    Article  CAS  Google Scholar 

  6. Li, Z. H., Moran, D., Fan, K. N. & Schleyer, P. V. R. σ-Aromaticity and σ-antiaromaticity in saturated inorganic rings. J. Phys. Chem. A 109, 3711–3716 (2005).

    Article  Google Scholar 

  7. Boldyrev, A. I. & Wang, L. S. All-metal aromaticity and antiaromaticity. Chem. Rev. 105, 3716–3757 (2005).

    Article  CAS  Google Scholar 

  8. Boronski, J. T. et al. A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding. Nature 598, 72–75 (2021).

    Article  CAS  Google Scholar 

  9. Freitag, K. et al. The σ-aromatic clusters [Zn3]+ and [Zn2Cu]: embryonic brass. Angew. Chem. Int. Ed. 54, 4370–4374 (2015).

    Article  CAS  Google Scholar 

  10. Popov, I. A. et al. Peculiar all-metal σ-aromaticity of the [Au2Sb16]4− anion in the solid state. Angew. Chem. Int. Ed. 55, 15344–15346 (2016).

    Article  CAS  Google Scholar 

  11. Zhu, C. et al. σ-Aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit. Angew. Chem. Int. Ed. 54, 3102–3106 (2015).

    Article  CAS  Google Scholar 

  12. Hao, Y., Wu, J. & Zhu, J. σ aromaticity dominates in the unsaturated three-membered ring of cyclopropametallapentalenes from groups 7–9: a DFT study. Chem. Eur. J. 21, 18805–18810 (2015).

    Article  CAS  Google Scholar 

  13. Chu, Z., He, G., Cheng, X., Deng, Z. & Chen, J. Synthesis and characterization of cyclopropaosmanaphthalenes containing a fused σ-aromatic metallacyclopropene unit. Angew. Chem. Int. Ed. 58, 9174–9178 (2019).

    Article  CAS  Google Scholar 

  14. Bao, X. et al. One-pot syntheses of rhena-2-benzopyrylium complexes with a fused metallacyclopropene unit. Chem. Commun. 57, 1643–1646 (2021).

    Article  CAS  Google Scholar 

  15. Zhuo, Q. et al. Multiyne chains chelating osmium via three metal-carbon σ bonds. Nat. Commun. 8, 1912 (2017).

    Article  Google Scholar 

  16. Hein, S. J., Lehnherr, D., Arslan, H., F, J. U.-R. & Dichtel, W. R. Alkyne benzannulation reactions for the synthesis of novel aromatic architectures. Acc. Chem. Res. 50, 2776–2788 (2017).

    Article  CAS  Google Scholar 

  17. Xu, H. L. et al. σ-Aromaticity-induced stabilization of heterometallic supertetrahedral clusters [Zn6Ge16]4− and [Cd6Ge16]4−. Angew. Chem. Int. Ed. 59, 17286–17290 (2020).

    Article  CAS  Google Scholar 

  18. Jian, T. et al. Nb2@Au6: a molecular wheel with a short Nb≡Nb triple bond coordinated by an Au6 ring and reinforced by σ aromaticity. Chem. Sci. 8, 7528–7536 (2017).

    Article  CAS  Google Scholar 

  19. Cui, M., Lin, R. & Jia, G. Chemistry of metallacyclobutadienes. Chem. Asian J. 13, 895–912 (2018).

    Article  CAS  Google Scholar 

  20. Rosenthal, U. Reactions of group 4 metallocene bis(trimethylsilyl)acetylene complexes with nitriles and isonitriles. Angew. Chem. Int. Ed. 57, 14718–14735 (2018).

    Article  CAS  Google Scholar 

  21. Schrock, R. R. Multiple metal–carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew. Chem. Int. Ed. 45, 3748–3759 (2006).

    Article  CAS  Google Scholar 

  22. Diver, S. T. & Giessert, A. J. Enyne metathesis (enyne bond reorganization). Chem. Rev. 104, 1317–1382 (2004).

    Article  CAS  Google Scholar 

  23. Fürstner, A. Alkyne metathesis on the rise. Angew. Chem. Int. Ed. 52, 2794–2819 (2013).

    Article  Google Scholar 

  24. Roland, C. D., Li, H., Abboud, K. A., Wagener, K. B. & Veige, A. S. Cyclic polymers from alkynes. Nat. Chem. 8, 791–796 (2016).

    Article  CAS  Google Scholar 

  25. Lv, Z. J., Chai, Z., Zhu, M., Wei, J. & Zhang, W. X. Selective coupling of lanthanide metallacyclopropenes and nitriles via azametallacyclopentadiene and η2-pyrimidine metallacycle. J. Am. Chem. Soc. 143, 9151–9161 (2021).

    Article  CAS  Google Scholar 

  26. Li, C., Dinoi, C., Coppel, Y. & Etienne, M. C–H bond activation of methane by a transient η2-cyclopropene/metallabicyclobutane complex of niobium. J. Am. Chem. Soc. 137, 12450–12453 (2015).

    Article  CAS  Google Scholar 

  27. Hoffbauer, M. R. & Iluc, V. M. [2+2] cycloadditions with an iron carbene: a critical step in enyne metathesis. J. Am. Chem. Soc. 143, 5592–5597 (2021).

    Article  CAS  Google Scholar 

  28. Lv, Z. J., Huang, Z., Shen, J., Zhang, W. X. & Xi, Z. Well-defined scandacyclopropenes: synthesis, structure, and reactivity. J. Am. Chem. Soc. 141, 20547–20555 (2019).

    Article  CAS  Google Scholar 

  29. Fang, B. et al. An actinide metallacyclopropene complex: synthesis, structure, reactivity, and computational studies. J. Am. Chem. Soc. 136, 17249–17261 (2014).

    Article  CAS  Google Scholar 

  30. Harrison, D. J. et al. Nickel fluorocarbene metathesis with fluoroalkenes. Angew. Chem. Int. Ed. 57, 5772–5776 (2018).

    Article  CAS  Google Scholar 

  31. O’Connor, J. M. et al. Conversion of a metallacyclobutene to cobalt−allene complexes. J. Am. Chem. Soc. 120, 1100–1101 (1998).

    Article  Google Scholar 

  32. McGowan, K. P., O’Reilly, M. E., Ghiviriga, I., Abboud, K. A. & Veige, A. S. Compelling mechanistic data and identification of the active species in tungsten-catalyzed alkyne polymerizations: conversion of a trianionic pincer into a new tetraanionic pincer-type ligand. Chem. Sci. 4, 1145–1155 (2013).

    Article  CAS  Google Scholar 

  33. Kurogi, T., Pinter, B. & Mindiola, D. J. Methylidyne transfer reactions with niobium. Organometallics 37, 3385–3388 (2018).

    Article  CAS  Google Scholar 

  34. Zhu, C. & Xia, H. Carbolong chemistry: a story of carbon chain ligands and transition metals. Acc. Chem. Res. 51, 1691–1700 (2018).

    Article  CAS  Google Scholar 

  35. Zhu, C. et al. Stabilization of anti-aromatic and strained five-membered rings with a transition metal. Nat. Chem. 5, 698–703 (2013).

    Article  CAS  Google Scholar 

  36. Zhu, C. et al. Stabilizing two classical antiaromatic frameworks: demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics. Angew. Chem. Int. Ed. 54, 6181–6185 (2015).

    Article  CAS  Google Scholar 

  37. Zhuo, Q. et al. Constraint of a ruthenium-carbon triple bond to a five-membered ring. Sci. Adv. 4, eaat0336 (2018).

    Article  Google Scholar 

  38. Torres-Alacan, J. et al. Photochemistry of a puckered ferracyclobutadiene in liquid solution studied by time-resolved Fourier-transform infrared spectroscopy. Chem. Eur. J. 21, 17184–17190 (2015).

    Article  CAS  Google Scholar 

  39. Buil, M. L., Cardo, J. J., Esteruelas, M. A. & Onate, E. Square-planar alkylidyne–osmium and five-coordinate alkylidene–osmium complexes: controlling the transformation from hydride-alkylidyne to alkylidene. J. Am. Chem. Soc. 138, 9720–9728 (2016).

    Article  CAS  Google Scholar 

  40. Batuecas, M. et al. Aromatic osmacyclopropenefuran bicycles and their relevance for the metal-mediated hydration of functionalized allenes. Angew. Chem. Int. Ed. 55, 13749–13753 (2016).

    Article  CAS  Google Scholar 

  41. Clark, G. R., Lu, G.-L., Roper, W. R. & Wright, L. J. Stepwise reactions of acetylenes with iridium thiocarbonyl complexes to produce isolable iridacyclobutadienes and conversion of these to either cyclopentadienyliridium or tethered iridabenzene complexes. Organometallics 26, 2167–2177 (2007).

    Article  CAS  Google Scholar 

  42. Schrock, R. R., Murdzek, J. S., Freudenberger, J. H., Churchill, M. R. & Ziller, J. W. Preparation of molybdenum and tungsten neopentylidyne complexes of the type M(CCMe3)(O2CR)3, their reactions with acetylenes, and the X-ray structure of the η3-cyclopropenyl complex W[C3(CMe3)Et2](O2CCH3)3. Organometallics 5, 25–33 (1986).

    Article  CAS  Google Scholar 

  43. Weinstock, I. A., Schrock, R. R. & Davis, W. M. Rhenium(VII) monoimido alkylidyne complexes. The importance of face selectivity in the metathesis of acetylenes via rhenacyclobutadiene intermediates. J. Am. Chem. Soc. 113, 135–144 (1991).

    Article  CAS  Google Scholar 

  44. Feher, F. J., Green, M. & Rodrigues, R. A. The formation of η2(3e)-bonded allenyl complexes by deprotonation of four-electron donor alkyne metal complexes. J. Chem. Soc. Chem. Commun. 1206–1208 (1987).

  45. Casey, C. P., Boller, T. M., Kraft, S. & Guzei, I. A. Structural isomers of aryl-substituted η3-propargyl complexes: η2-1-metalla(methylene)cyclopropene and η3-benzyl complexes. J. Am. Chem. Soc. 124, 13215–13221 (2002).

    Article  CAS  Google Scholar 

  46. Gamble, A. S., Birdwhistell, K. R. & Templeton, J. L. Electrophilic addition reactions of tungsten η2-allenyl complexes formed by deprotonation of four-electron alkyne ligands. J. Am. Chem. Soc. 112, 1818–1824 (2002).

    Article  Google Scholar 

  47. Zhu, C. et al. Planar Möbius aromatic pentalenes incorporating 16 and 18 valence electron osmiums. Nat. Commun. 5, 3265 (2014).

    Article  Google Scholar 

  48. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  Google Scholar 

  49. Geuenich, D., Hess, K., Kohler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article  CAS  Google Scholar 

  50. Santos, J. C., Tiznado, W., Contreras, R. & Fuentealba, P. Sigma–pi separation of the electron localization function and aromaticity. J. Chem. Phys. 120, 1670–1673 (2004).

    Article  CAS  Google Scholar 

  51. Wheeler, S. E., Houk, K. N., Schleyer, P. & Allen, W. D. A hierarchy of homodesmotic reactions for thermochemistry. J. Am. Chem. Soc. 131, 2547–2560 (2009).

    Article  CAS  Google Scholar 

  52. Oki, K., Takase, M., Mori, S. & Uno, H. Synthesis and isolation of antiaromatic expanded azacoronene via intramolecular Vilsmeier-type reaction. J. Am. Chem. Soc. 141, 16255–16259 (2019).

    Article  CAS  Google Scholar 

  53. Ueta, K. et al. meso-Oxoisocorroles: tunable antiaromaticity by metalation and coordination of Lewis acids as well as aromaticity reversal in the triplet excited state. J. Am. Chem. Soc. 143, 7958–7967 (2021).

    Article  CAS  Google Scholar 

  54. Higashino, T. et al. Mobius antiaromatic bisphosphorus complexes of [30]hexaphyrins. Angew. Chem. Int. Ed. 49, 4950–4954 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (numbers 22071206, 21931002 and 92156021), the Natural Science Foundation of Fujian Province of China (number 2020J01025), the Shenzhen Science and Technology Innovation Committee (number JCYJ20200109140812302) and the Guangdong Provincial Key Laboratory of Catalysis (number 2020B121201002).

Author information

Authors and Affiliations

Authors

Contributions

H.X. and Y.-M.L. conceived the project. K.Z. and Y.L. performed the experiments. K.Z., Y.L., H.X. and Y.-M.L. analysed and interpreted the experimental data. K.R. and Y.H. designed and performed the theoretical calculations. K.Z., Y.L. and Y.-M.L. prepared the manuscript. Y.L. and K.Z. prepared the Supplementary Information. All the authors discussed the results and contributed to the preparation of the final manuscript.

Corresponding authors

Correspondence to Yu-Mei Lin or Haiping Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Daniel Mindiola and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–70, Tables 1–11, Scheme 1, Computational Methods, Discussion.

Supplementary Data 1

Crystallographic data for compound 2a; CCDC 2103042.

Supplementary Data 2

Crystallographic data for compound 3a; CCDC 2103166.

Supplementary Data 3

Crystallographic data for compound 3b; CCDC 2103167.

Supplementary Data 4

Crystallographic data for compound 3c; CCDC 2103168.

Supplementary Data 5

Crystallographic data for compound 4A; CCDC 2103171.

Supplementary Data 6

Crystallographic data for compound 5b; CCDC 2103169.

Supplementary Data 7

Crystallographic data for compound 6a; CCDC 2103170.

Supplementary Data 8

Cartesian coordinate-optimized structures for calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, K., Liu, Y., Ruan, K. et al. Ring contraction of metallacyclobutadiene to metallacyclopropene driven by π- and σ-aromaticity relay. Nat. Synth 2, 67–75 (2023). https://doi.org/10.1038/s44160-022-00194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00194-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing