Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using sound to synthesize covalent organic frameworks in water

Abstract

Covalent organic frameworks (COFs) are typically synthesized using solvothermal conditions (>120 °C, >72 hours) in harmful organic solvents. Here we report a strategy to rapidly (<60 minutes) synthesize imine-linked COFs in aqueous acetic acid using sonochemistry and thus avoid most of the disadvantages of solvothermal methods. Using the sonochemical method, we synthesized to our knowledge previously unreported COFs. The crystallinity and porosity of these COFs is comparable to or better than those of the same materials made by established solvothermal routes. The sonochemical method even works in sustainable solvents, such as food-grade vinegar. The generality of the method is shown in the preparation of a 2D COF with pendant functionalization and of a COF with 3D connectivity. Finally, a COF synthesized sonochemically acts as an excellent photocatalyst for the sacrificial hydrogen evolution from water, showing a more sustained catalytic performance compared with that of its solvothermal analogue. The speed, ease and generality of this sonochemical method together with improved material quality makes the use of sound an enabling methodology for the rapid discovery of functional COFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Apparatus and conditions used for sonochemical synthesis, the COFs studied and the monomers used to synthesize them.
Fig. 2: Systematic investigation of the effect of reaction time on the prototypical COF TAPB-DMTA formed by sonochemical synthesis (sonoCOF-1) in aqueous AcOH.
Fig. 3: The structures of sonoCOF-1–sonoCOF-9 confirmed by Pawley refinements based on the modelled crystal structures.
Fig. 4: Synthetic routes for COFs sonoCOF-8 and sonoCOF-9.
Fig. 5: Photocatalytic hydrogen evolution experiments and characterization of sonoCOFs.

Similar content being viewed by others

Data availability

Source Data are provided with this paper. All other data supporting the finding of this study are available within this article and its Supplementary Information. The experimental procedures and characterization of all the COFs are provided in the Supplementary Information.

References

  1. Wang, Z., Zhang, S., Chen, Y., Zhang, Z. & Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49, 708–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez-San-Miguel, D., Montoro, C. & Zamora, F. Covalent organic framework nanosheets: preparation, properties and applications. Chem. Soc. Rev. 49, 2291–2302 (2020).

    Article  PubMed  Google Scholar 

  3. Song, Y., Sun, Q., Aguila, B. & Ma, S. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 6, 1801410 (2019).

    Article  Google Scholar 

  4. Geng, K. Y. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, N. L., Clowes, R., Ritchie, L. K. & Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21, 204–206 (2009).

    Article  CAS  Google Scholar 

  6. Matsumoto, M. et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J. Am. Chem. Soc. 139, 4999–5002 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, D. et al. Rapid, ambient temperature synthesis of imine covalent organic frameworks catalyzed by transition-metal nitrates. Chem. Mater. 33, 3394–3400 (2021).

    Article  Google Scholar 

  8. Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent–organic-framework membranes. Adv. Mater. 29, 1603945 (2017).

    Article  Google Scholar 

  9. Karak, S. et al. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139, 1856–1862 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Karak, S., Kumar, S., Pachfule, P. & Banerjee, R. Porosity prediction through hydrogen bonding in covalent organic frameworks. J. Am. Chem. Soc. 140, 5138–5145 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Das, G., Shinde, D. B., Kandambeth, S., Biswal, B. P. & Banerjee, R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50, 12615–12618 (2014).

    Article  CAS  Google Scholar 

  13. Emmerling, S. T. et al. In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. Chem 7, 1639–1652 (2021).

    Article  CAS  Google Scholar 

  14. Feriante, C. H. et al. Rapid synthesis of high surface area imine-linked 2D covalent organic frameworks by avoiding pore collapse during isolation. Adv. Mater. 32, 1905776 (2019).

    Article  Google Scholar 

  15. Sick, T. et al. Switching on and off interlayer correlations and porosity in 2D covalent organic frameworks. J. Am. Chem. Soc. 141, 12570–12581 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Thote, J. et al. Constructing covalent organic frameworks in water via dynamic covalent bonding. IUCrJ 3, 402–407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, J. et al. Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. New J. Chem. 43, 6116–6120 (2019).

    Article  CAS  Google Scholar 

  18. Martín-Illán, J. Á. et al. Green synthesis of imine-based covalent organic frameworks in water. Chem. Commun. 56, 6704–6707 (2020).

    Article  Google Scholar 

  19. Suslick, K. S. Sonochemistry. Science 247, 1439–1445 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, S. T., Kim, J., Cho, H. Y., Kim, S. & Ahn, W. S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2, 10179 (2012).

    Article  CAS  Google Scholar 

  21. Yoo, J. et al. In situ synthesis of covalent organic frameworks (COFs) on carbon nanotubes and graphenes by sonochemical reaction for CO2 adsorbents. Chem. Lett. 44, 560–562 (2015).

    Article  CAS  Google Scholar 

  22. Xu, H., Gao, J. & Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Zhi, Y. F. et al. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A 5, 22933–22938 (2017).

    Article  CAS  Google Scholar 

  24. Nguyen, H. L. et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 142, 2218–2221 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Bai, L. Y., Gao, Q. & Zhao, Y. L. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 4, 14106–14110 (2016).

    Article  CAS  Google Scholar 

  26. Ascherl, L. et al. Solvatochromic covalent organic frameworks. Nat. Commun. 9, 3802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. EL-Mahdy, A. F. M. et al. Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. J. Mater. Chem. A 6, 19532–19541 (2018).

    Article  CAS  Google Scholar 

  28. Auras, F. et al. Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks. J. Am. Chem. Soc. 138, 16703–16710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de la Peña Ruigómez, A. et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature. Chem. Eur. J. 21, 10666–10670 (2015).

    Article  PubMed  Google Scholar 

  30. Yang, J. et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 60, 19797–19803 (2021).

    Article  CAS  Google Scholar 

  31. Nalesso, S., Bussemaker, M. J., Sear, R. P., Hodnett, M. & Lee, J. A review on possible mechanisms of sonocrystallisation in solution. Ultrason. Sonochem. 57, 125–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, B. J., Overholts, A. C., Hwang, N. & Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 52, 3690–3693 (2016).

    Article  CAS  Google Scholar 

  33. Li, H. et al. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. J. Am. Chem. Soc. 139, 16310–16318 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Stewart, D. et al. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking. Nat. Commun. 8, 1102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J., Han, X., Wu, X., Liu, Y. & Cui, Y. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis. J. Am. Chem. Soc. 139, 8277–8285 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Lan, Y. et al. Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nat. Commun. 9, 5274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Aitchison, C. M. et al. Photocatalytic proton reduction by a computationally identified molecular hydrogen-bonded framework. J. Mater. Chem. A 8, 7158–7170 (2020).

    Article  CAS  Google Scholar 

  39. Vyas, V. S. et al. A tunable azine covalent organic framework platform for visible light induced hydrogen generation. Nat. Commun. 6, 8508 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Bai, Y. et al. Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory. J. Am. Chem. Soc. 141, 9063–9071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, P. et al. Exceptional iodine capture in 2D covalent organic frameworks. Adv. Mater. 30, 1801991 (2018).

    Article  Google Scholar 

  42. Zhu, D. & Verduzco, R. Ultralow surface tension solvents enable facile COF activation with reduced pore collapse. ACS Appl. Mater. Interfaces 12, 33121–33127 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Mullangi, D. et al. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 14, 1801233 (2018).

    Article  Google Scholar 

  44. Bai, L. et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 52, 4128–4131 (2016).

    Article  CAS  Google Scholar 

  45. Dong, J., Wang, Y., Liu, G., Cheng, Y. & Zhao, D. Isoreticular covalent organic frameworks for hydrocarbon uptake and separation: the important role of monomer planarity. CrystEngComm 19, 4899–4904 (2017).

    Article  CAS  Google Scholar 

  46. Meng, Y., Lin, G., Ding, H., Liao, H. & Wang, C. Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium-sulfur batteries. J. Mater. Chem. A 6, 17186–17191 (2018).

    Article  CAS  Google Scholar 

  47. Li, X. et al. Molecular engineering of bandgaps in covalent organic frameworks. Chem. Mater. 30, 5743–5749 (2018).

    Article  CAS  Google Scholar 

  48. Shan, Z. et al. Dynamic transformation between covalent organic frameworks and discrete organic cages. J. Am. Chem. Soc. 142, 21279–21284 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Romero Muñiz, I. et al. Unveiling the local structure of palladium loaded into imine-linked layered covalent organic frameworks for cross-coupling catalysis. Angew. Chem. Int. Ed. 59, 13013–13020 (2020).

    Article  Google Scholar 

  50. Garzón Tovar, L. et al. A MOF@COF composite with enhanced uptake through interfacial pore generation. Angew. Chem. Int. Ed. 58, 9512–9516 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design and the Engineering and Physical Sciences Research Council (EPSRC). P.Y., H.C., L.L. and B.L. thank the China Scholarship Council for PhD studentships. We thank the Materials Innovation Factory (MIF) team for help with instrument training. We thank M. Lightowler of Stockholm University for testing the feasibility of using 3D electron diffraction to solve the COF structures. The TEM analysis was performed in the Albert Crewe Centre for Electron Microscopy, a University of Liverpool Shared Research Facility.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. synthesized and characterized the materials, performed photocatalytic experiments and analysed the photocatalysis results with H.Y. P.Y. performed the scanning electron microscopy, time-correlated single photon counting and FTIR measurements. H.Y. performed the ultraviolet measurements. R.C. performed thermogravimetric analysis. A.M.J. and W.Z. performed gas adsorption measurements. H.C. and L.L. performed electrochemical measurements. M.B. and N.D.B. performed TEM measurements. W.Z. conceived the modelling strategy. B.L. and Z.P. provided useful advice in the structural simulation of COFs. Y.W. and J.W.W. conceived the project. A.I.C., Y.W. and J.W.W. directed the research. Data were interpreted by all the authors and the manuscript was prepared by A.I.C., Y.W., J.W.W. and W.Z.

Corresponding authors

Correspondence to John W. Ward, Yue Wu or Andrew I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Synthesis thanks Donglin Jiang, Qihua Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alison Stoddart was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A comparison of BET surface areas and total pore volumes of sonoCOFs synthesized in aqueous and organic solvents.

The Brunauer–Emmett–Teller (BET) surface area (dark shading) and pore volume (light shading) of all the synthesized sonoCOFs in aqueous solvent (blue bars) are greater than or equal to the equivalent sonoCOFs synthesized in organic solvent (pink bars).

Source data

Supplementary information

Source data

Source Data Fig. 5

Raw data for Fig. 5a,b.

Source Data Fig. 5

Full-size TEM images supporting Fig. 5d,e.

Source Data Extended Data Fig. 1

Raw data for Extended Data Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Yan, P., Yang, H. et al. Using sound to synthesize covalent organic frameworks in water. Nat Synth 1, 87–95 (2022). https://doi.org/10.1038/s44160-021-00005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00005-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing