Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue

Abstract

Beiging of white adipose tissue (WAT) is associated with an increase of anti-inflammatory M2-like macrophages in WAT. However, mechanisms through which M2-like macrophages affect beiging are incompletely understood. Here, we show that the macrophage cytokine Slit3 is secreted by adipose tissue macrophages and promotes cold adaptation by stimulating sympathetic innervation and thermogenesis in mice. Analysing the transcriptome of M2-like macrophages in murine inguinal WAT (iWAT) after cold exposure, we identify Slit3 as a secreted cytokine. Slit3 binds to the ROBO1 receptor on sympathetic neurons to stimulate Ca2+/calmodulin-dependent protein kinase II signalling and norepinephrine release, which enhances adipocyte thermogenesis. Adoptive transfer of Slit3-overexpressing M2 macrophages to iWAT promotes beiging and thermogenesis, whereas mice that lack Slit3 in myeloid cells are cold-intolerant and gain more weight. Our findings shed new light on the integral role of M2-like macrophages for adipose tissue homeostasis and uncover the macrophage–Slit3–sympathetic neuron–adipocyte signalling axis as a regulator of long-term cold adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Slit3 is cold sensitive and secreted by M2 macrophages.
Fig. 2: Slit3-overexpressed M2 cells increase thermogenesis.
Fig. 3: Slit3 activates TH activity in sympathetic nerves.
Fig. 4: SNS denervation in iWAT blocked Slit3-induced thermogenesis.
Fig. 5: Monocytic deletion of Slit3 impairs thermogenesis.
Fig. 6: Slit3 stimulates the phosphorylation of TH via PKA/CaMKII.
Fig. 7: ROBO1 is the receptor for Slit3 to stimulate NE production.
Fig. 8: Knockdown of ROBO1 in iWAT blocks thermogenesis.

Similar content being viewed by others

Data availability statement

The raw RNA-sequence data used to generate Fig. 1b,c are available at the Sequence Read Archive (accession no. PRJNA744369). The data used to generate the main results shown in Figs. 18 are available as source data. Source data including uncropped western blots and raw microscopy images are provided with this paper or upon request from the corresponding authors: S.Q., e-mail shuwenqian2013@163.com or shuwenqian@fudan.edu.cn and Q.-Q.T., e-mail qqtang@shmu.edu.cn.

References

  1. Abdullahi, A. & Jeschke, M. G. Taming the flames: targeting white adipose tissue browning in hypermetabolic conditions. Endocr. Rev. 38, 538–549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Aquila, H., Link, T. A. & Klingenberg, M. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. EMBO J. 4, 2369–2376 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Enerbäck, S. Human brown adipose tissue. Cell Metab. 11, 248–252 (2010).

    Article  PubMed  Google Scholar 

  5. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ(PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, W. & Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab. 26, 686–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Hsu, J. W. et al. Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food Chem. Toxicol. 142, 111487 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Picoli, C. C. et al. Resistance exercise training induces subcutaneous and visceral adipose tissue browning in Swiss mice. J. Appl. Physiol. 129, 66–74 (2020).

    Article  PubMed  Google Scholar 

  12. Zaror-Behrens, G. & Himms-Hagen, J. Cold-stimulated sympathetic activity in brown adipose tissue of obese (Ob/Ob) mice. Am. J. Physiol. 244, E361–E366 (1983).

    CAS  PubMed  Google Scholar 

  13. Sigurdson, S. L. & Himms-Hagen, J. Control of norepinephrine turnover in brown adipose tissue of syrian hamsters. Am. J. Physiol. 254, R960–R968 (1988).

    CAS  PubMed  Google Scholar 

  14. Hücking, K., Hamilton-Wessler, M., Ellmerer, M. & Bergman, R. N. Burst-like control of lipolysis by the sympathetic nervous system in vivo. J. Clin. Invest. 111, 257–264 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goto, T. et al. Proinflammatory cytokine interleukin-1b suppresses cold-induced thermogenesis in adipo cytes. Cytokine 77, 107–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Sakamoto, T. et al. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am. J. Physiol. Cell Physiol. 304, C729–C738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakamoto, T. et al. Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am. J. Physiol. Endocrinol. Metab. 310, E676–E687 (2016).

    Article  PubMed  Google Scholar 

  21. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fischer, K. et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, Z. et al. The FGF21-CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab. 26, 493–508 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Lv, Y. et al. Adrenomedullin 2 enhances beiging in white adipose tissue directly in an adipocyte-autonomous manner and indirectly through activation of M2 macrophages. J. Biol. Chem. 291, 23390–23402 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Esteve Ràfols, M. Adipose tissue: cell heterogeneity and functional diversity. Endocrinol. Nutr. 61, 100–112 (2014).

    Article  PubMed  Google Scholar 

  30. Weinstock, A., Moura Silva, H., Moore, K. J., Schmidt, A. N. & Fisher, E. A. Leukocyte heterogeneity in adipose tissue, including in obesity. Circ. Res. 126, 1590–1612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, L. et al. Fat cells directly sense temperature to activate thermogenesis. Proc. Natl Acad. Sci. USA 110, 12480–12485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, X. et al. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes. J. Therm. Biol. 58, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Qian, S. W. et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc. Natl Acad. Sci. USA 110, E798–E807 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Peirce, V., Carobbio, S. & Vidal-Puig, A. The different shades of fat. Nature 510, 76–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Strittmatter, S. M., Fankhauser, C., Huang, P. L., Mashimo, H. & Fishman, M. C. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 80, 445–452 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, F., Lu, C., Severin, C. & Sretavan, D. W. GAP-43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation. Development 127, 969–980 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Rooks, C. R. et al. Sympathetic denervation does not prevent a reduction in fat pad size of rats or mice treated with peripherally administered leptin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R92–R102 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Cao, Q., Jing, J., Cui, X., Shi, H. & Xue, B. Sympathetic nerve innervation is required for beigeing in white fat. Physiol. Rep. 7, e14031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vulliet, P. R., Woodgett, J. R. & Cohen, P. Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. J. Biol. Chem. 259, 13680–13683 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Dunkley, P. R. & Dickson, P. W. Tyrosine hydroxylase phosphorylation in vivo. J. Neurochem. 149, 706–728 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Van Marken Lichtenbelt, W. D. et al. Cold-actived brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  PubMed  Google Scholar 

  45. Nedegaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence foractive brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  Google Scholar 

  46. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymalstem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Qian, S. W. et al. BMP4 facilitates beige fat biogenesis via regulating adipose tissue macrophages. J. Mol. Cell. Biol. 11, 14–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hui, X. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Mauer, J. et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15, 423–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dun, X. P. et al. Macrophage-derived Slit3 controls cell migration and axon pathfinding in the peripheral nerve bridge. Cell Rep. 26, 1458–1472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, B. J. et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J. Clin. Invest. 128, 1429–1441 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li, H. S. et al. Vertebrate Slit, a secreted ligand for the transmembrane protein roundabout is a repellent for olfactory bulb axons. Cell 96, 807–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Svensson, K. J. et al. A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab. 23, 454–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bamshad, M., Aoki, V. T., Adkison, M. G., Warren, W. S. & Bartness, T. J. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299 (1998).

    CAS  PubMed  Google Scholar 

  57. Boulant, J. A. Neuronal basis of Hammel’s model for set-point thermoregulation. J. Appl. Physiol. 100, 1347–1354 (2006).

    Article  PubMed  Google Scholar 

  58. Castellani, J. W. & Young, A. J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 196, 63–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Ying, W., Cheruku, P. S., Bazer, F. W., Safe, S. T. & Zhou, B. Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp. 23, 50323 (2013).

    Google Scholar 

  60. Robinson, M. D., McCarthy, D. J. & Smyth, D. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kutyavin, V. & Chawla, A. BCL6 regulates brown adipocyte dormancy to maintain thermogenic reserve and fitness. Proc. Natl Acad. Sci. USA 116, 17071–17080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fischer, K. et al. The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nat. Commun. 11, 2306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank GemPharmatech Co., Ltd, Nanjing, China for producing the Slit3f/f mice. This work was supported by the National Key R&D Program of the Ministry of Science and Technology of China (grant no. 2018YFA0800401) to Q.-Q.T., and National Natural Science Foundation grant nos. 31670787 to S.Q., 81730021 to Q.-Q.T. and 81970754 to Y.T.

Author information

Authors and Affiliations

Authors

Contributions

S.Q., Q.-Q.T. and Y.-N.W. conceived and designed the experiments. S.Q. and Y.-N.W. wrote the paper. S.Q. and Q.-Q.T. administrated the project. Q.-Q.T., S.Q. and Y.T. acquired the funding. Y.-N.W., S.Q., Y.T., Z.H., H.M., L.W., Y.L., Q.Y. and C.Z. performed the experiments. Y.-N.W., D.P., C.Z. and S.Q. reviewed and edited the paper.

Corresponding authors

Correspondence to Shuwen Qian or Qi-Qun Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Metabolism thanks Sheng Bi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Isabella Samuelson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Table 1.

Reporting Summary

Supplementary Data 1

RNA-sequencing data of all room temperature versus cold differentially expressed genes.

Supplementary Data 2

All data presented in the graphs in the figures and supplementary figures.

Supplementary Data 3

Raw microscopic images for the main figures.

Supplementary Data 4

Uncropped western blot images for the supplementary figures.

Supplementary Data 5

Statistic results of exact P values for the supplementary figures.

Supplementary Data 6

Raw microscopic images for all supplementary figures.

Source data

Source Data Fig. 1

Uncropped western blot images.

Source Data Fig. 1

Statistic results of exact P values.

Source Data Fig. 2

Uncropped western blot images.

Source Data Fig. 2

Statistic results of exact P values.

Source Data Fig. 3

Uncropped western blot images.

Source Data Fig. 3

Statistic results of exact P values.

Source Data Fig. 4

Uncropped western blot images.

Source Data Fig. 4

Statistic results of exact P values.

Source Data Fig. 5

Uncropped western blot images.

Source Data Fig. 5

Statistic results of exact P values.

Source Data Fig. 6

Uncropped western blot images.

Source Data Fig. 6

Statistic results of exact P values.

Source Data Fig. 7

Uncropped western blot images.

Source Data Fig. 7

Statistic results of exact P values.

Source Data Fig. 8

Uncropped western blot images.

Source Data Fig. 8

Statistic results of exact P values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Tang, Y., He, Z. et al. Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue. Nat Metab 3, 1536–1551 (2021). https://doi.org/10.1038/s42255-021-00482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00482-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing