Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regioselective hydroformylation with subnanometre Rh clusters in MFI zeolite

Abstract

Achieving the regioselective hydroformylation of linear α-olefins to linear aldehydes using solid catalysts with regioselectivities comparable to the corresponding homogeneous process is a great challenge in the chemical industry. Despite the tremendous efforts devoted to this research topic, most of the reported heterogeneous metal catalysts still give considerably lower regioselectivities than well-established homogeneous metal catalysts. Here we show the design of efficient Rh-zeolite catalysts, in which subnanometre Rh clusters are selectively confined in the sinusoidal ten-membered-ring channels of MFI zeolite, for the hydroformylation of long-chain linear α-olefins (C6–C12) into linear aldehydes with very high linear-to-branched aldehyde ratios (up to 400). The exceptional catalytic performances result from the involvement of the MFI zeolite framework as a rigid solid ligand that accommodates subnanometre Rh clusters in the sinusoidal channels of the MFI zeolite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic conversion of linear α-olefins via the hydroformylation reaction.
Fig. 2: Structural characterization of Rh-MFI catalysts using the iDPC-STEM imaging technique.
Fig. 3: Catalytic performance of the supported Rh catalysts.
Fig. 4: Theoretical studies of various solid Rh catalysts.
Fig. 5: Scope study of Rh-zeolite catalysts for the hydroformylation of LAOs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and Supplementary Information or from the corresponding authors upon reasonable request. The optimized structures of all reaction intermediates and transition states derived from theoretical calculations are provided as Supplementary Data.

References

  1. Franke, R., Selent, D. & Borner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Pospech, J., Fleischer, I., Franke, R., Buchholz, S. & Beller, M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angew. Chem. Int. Ed. 52, 2852–2872 (2013).

    Article  CAS  Google Scholar 

  3. Hood, D. M. et al. Highly active cationic cobalt(II) hydroformylation catalysts. Science 367, 542–548 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Linear Alpha-Olefins—Chemical Economics Handbook (S&P Global, 2023); https://ihsmarkit.com/products/linear-alpha-olefins-chemical-economics-handbook.html

  5. Klein, H., Jackstell, R., Wiese, K.-D., Borgmann, C. & Beller, M. Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes. Angew. Chem. Int. Ed. 40, 3408–3411 (2001).

    Article  CAS  Google Scholar 

  6. Seayad, A. et al. Internal olefins to linear amines. Science 297, 1676–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Broussard, M. E. et al. A bimetallic hydroformylation catalyst: high regioselectivity and reactivity through homobimetallic cooperativity. Science 260, 1784–1788 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigues, F. M. S., Carrilho, R. M. B. & Pereira, M. M. Reusable catalysts for hydroformylation‐based reactions. Eur. J. Inorg. Chem. 2021, 2294–2324 (2021).

    Article  CAS  Google Scholar 

  9. Hanf, S., Rupflin, L. A., Gläser, R. & Schunk, S. A. Current state of the art of the solid Rh-based catalyzed hydroformylation of short-chain olefins. Catalysts 10, 510 (2020).

    Article  CAS  Google Scholar 

  10. Amsler, J. et al. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 142, 5087–5096 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Sun, Q. et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 137, 5204–5209 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Li, C. et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green. Chem. 18, 2995–3005 (2016).

    Article  CAS  Google Scholar 

  13. Lang, R. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55, 16054–16058 (2016).

    Article  CAS  Google Scholar 

  14. Zhang, J. et al. Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins. J. Catal. 387, 196–206 (2020).

    Article  CAS  Google Scholar 

  15. Riisager, A., Fehrmann, R., Haumann, M. & Wasserscheid, P. Supported ionic liquid phase (SILP) catalysis: an innovative concept for homogeneous catalysis in continuous fixed‐bed reactors. Eur. J. Inorg. Chem. 2006, 695–706 (2006).

    Article  Google Scholar 

  16. Madhavan, N., Jones, C. W. & Weck, M. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design. Acc. Chem. Res. 41, 1153–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hübner, S., de Vries, J. G. & Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 358, 3–25 (2016).

    Article  Google Scholar 

  18. Davis, R. J., Rossin, J. A. & Davis, M. E. Hydroformylation by rhodium zeolite A catalysts. J. Catal. 98, 477–486 (1986).

    Article  CAS  Google Scholar 

  19. Shang, W. et al. Efficient heterogeneous hydroformylation over zeolite-encaged isolated rhodium ions. CCS Chem. 5, 1526–1539 (2023).

    Article  CAS  Google Scholar 

  20. Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2020).

    Article  Google Scholar 

  21. Sun, Q., Wang, N. & Yu, J. Advances in catalytic applications of zeolite-supported metal catalysts. Adv. Mater. 33, e2104442 (2021).

    Article  PubMed  Google Scholar 

  22. Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, H., Wang, L. & Xiao, F. S. Metal@zeolite hybrid materials for catalysis. ACS Cent. Sci. 6, 1685–1697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Babucci, M., Guntida, A. & Gates, B. C. Atomically dispersed metals on well-defined supports including zeolites and metal–organic frameworks: structure, bonding, reactivity, and catalysis. Chem. Rev. 120, 11956–11985 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, L., Lopez-Haro, M., Calvino, J. J. & Corma, A. Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites. Nat. Protoc. 16, 1871–1906 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Fontaine-Gautrelet, C. et al. CO- and N2-FTIR characterisation of oxidised Rh species supported on Ce0.68Zr0.32O2. Phys. Chem. Chem. Phys. 8, 3732–3740 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Magee, J. W., Palomino, R. M. & White, M. G. Infrared spectroscopy investigation of Fe-promoted Rh catalysts supported on titania and ceria for CO hydrogenation. Catal. Lett. 146, 1771–1779 (2016).

    Article  CAS  Google Scholar 

  29. Fang, C.-Y. et al. Synthesis of Rh6(CO)16 in supercages of zeolite HY: reaction network and kinetics of formation from mononuclear rhodium precursors via Rh4(CO)12 facilitated by the water gas shift half-reaction. J. Phys. Chem. C 124, 2513–2520 (2019).

    Article  Google Scholar 

  30. Liu, L. & Corma, A. Identification of the active sites in supported subnanometric metal catalysts. Nat. Catal. 4, 453–456 (2021).

    Article  CAS  Google Scholar 

  31. Tsekov, R. & Smirniotis, P. G. Resonant diffusion of normal alkanes in zeolites: effect of the zeolite structure and alkane molecule vibrations. J. Phys. Chem. B 102, 9385–9391 (1998).

    Article  CAS  Google Scholar 

  32. Smit, B. & Maesen, T. L. M. Commensurate ‘freezing’ of alkanes in the channels of a zeolite. Nature 374, 42–44 (1995).

    Article  CAS  Google Scholar 

  33. Dubbeldam, D., Calero, S., Maesen, T. L. & Smit, B. Understanding the window effect in zeolite catalysis. Angew. Chem. Int. Ed. 42, 3624–3626 (2003).

    Article  CAS  Google Scholar 

  34. Maginn, E. J., Bell, A. T. & Theodorou, D. N. Sorption thermodynamics, siting, and conformation of long n-alkanes in silicalite as predicted by configurational-bias Monte Carlo integration. J. Phys. Chem. 99, 2057–2079 (2002).

    Article  Google Scholar 

  35. Yuan, J. et al. Thermal resistance effect on anomalous diffusion of molecules under confinement. Proc. Natl Acad. Sci USA 118, e2102097118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010)

  37. Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998).

    Article  CAS  Google Scholar 

  38. Simonelli, L. et al. CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. https://doi.org/10.1080/23311940.2016.1231987 (2016)

  39. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  42. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  43. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  PubMed  Google Scholar 

  46. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  47. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  48. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  49. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.L. is grateful for the financial support from the National Natural Science Foundation of China (22272087), Tsinghua University (Initiative Scientific Research Program (20233080016), the International Joint Mission on Climate Change and Carbon Neutrality (20233080033), the Dushi Program (20231080010)) and the National Key R&D Program of China (2022YFA1503901). Z.C. acknowledges the National Natural Science Foundation of China (numbers 21972161 and 22172186), the Autonomous Research Project of the State Key Laboratory of Coal Conversion (number 2022BWZ009), the Inner Mengolia Science & Technology Project Plan (number 2021GG0311), the Major Science and Technology Project of Ordos (2022EEDSKJZDZX001), the Institute of Coal Chemistry, Chinese Academy of Sciences and Synfuels China, Co., Ltd for financial support. L.Z acknowledges the National Natural Science Foundation of China (22103047) and the Young Scholars Program from the School of Vehicle and Mobility of Tsinghua University. M.L.-H. is grateful for financial support from MCIN/AEI/10.13039/501100011033 (PID2019-110018GA-I00) and the support from the DME-UCA Node of the Spanish Singular Infrastructure for Electron Microscopy of Materials (ICTS ELECMI). The in situ XAS experiments were performed at the CLÆSS (BL22) beamline of ALBA Synchrotron with collaboration of the ALBA staff. This research used resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory, and was supported by the US Department of Energy under contract number DE-AC02-06CH11357, as well as the Canadian Light Source and its funding partners. We thank R. Zong for his help in the electron microscopy characterization of the Rh-zeolite catalysts at Tsinghua University.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and Z.C. conceived the project. L.Z. designed the theoretical studies. X.D. carried out the materials synthesis and part of the structural characterization. T.Y. performed the hydroformylation reaction tests and data analyses. L.Q. performed the theoretical calculations. H.H. conducted the in situ infrared and XPS investigations and helped with analysis of the obtained XAS data. M.L.-H. characterized the Rh-MFI catalysts using the iDPC-STEM imaging technique and carried out the image simulations. L.L. analysed the iDPC-STEM images. C.M. and G.A. measured the Rh-zeolite materials via in situ XAS and analysed the data. D.M.M. contributed to the spectroscopic characterization of the Rh-zeolite materials via XAS. X.Z. participated in the catalytic studies and data analysis. L.L., Z.C. and L.Z. wrote the manuscript with input from all of the other authors.

Corresponding authors

Correspondence to Liang Zhang, Zhi Cao or Lichen Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Marco Ranocchiari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Tables 1–26, Notes 1–7 and refs. 1–94.

Supplementary Data

Optimized structures of all reaction intermediates and transition states derived from theoretical calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, X., Yan, T., Qian, L. et al. Regioselective hydroformylation with subnanometre Rh clusters in MFI zeolite. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01155-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing