Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating

Abstract

Controlling the magnetic anisotropy of ferromagnetic materials is key to the development of magnetic switching devices and spintronic applications. The intrinsic magnetic anisotropy of such materials is typically fixed along a particular direction—the magnetic easy axis. However, if the magnetic anisotropy could be continuously modulated, this could be used to create multifunctional devices. Here we report the gate-tunable modulation of magnetic anisotropy—from an initial out-of-plane to a canted orientation and then finally to an in-plane orientation—in the van der Waals ferromagnet Fe5GeTe2. We use angle-dependent anomalous Hall effect measurements and magneto-optical Kerr effect measurements, combined with quantitative Stoner–Wohlfarth analysis, to show that the magnetic easy axis continuously rotates via a spin-flop pathway and can be modulated in a large range from 2.11 to −0.38 MJ m–3. The tuning of anisotropy can also be achieved by modulating the temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the concept of spin-flop and spin-flip transitions, AHE and magnetic domains in layered FM Fe5GeTe2.
Fig. 2: Temperature- and thickness-dependent magnetic anisotropy in Fe5GeTe2 devices.
Fig. 3: Electrical tuning of magnetic states and magnetic anisotropy energy in gated Fe5GeTe2 devices.
Fig. 4: Gate-tuned spin-flop transition in Fe5GeTe2 devices.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Further data that support the other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  2. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  3. Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys. 4, 847–850 (2008).

    Article  Google Scholar 

  4. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article  Google Scholar 

  5. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  Google Scholar 

  6. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  Google Scholar 

  7. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–625 (2016).

    Article  Google Scholar 

  8. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  Google Scholar 

  9. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).

    Article  Google Scholar 

  10. Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 187201 (2009).

    Article  Google Scholar 

  11. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Article  Google Scholar 

  12. Kan, D. et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 15, 432–437 (2016).

    Article  Google Scholar 

  13. Sears, J. A. et al. Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3. Nat. Phys. 16, 837–840 (2020).

    Article  Google Scholar 

  14. Egger, R. & Schoeller, H. RKKY interaction and Kondo screening cloud for strongly correlated electrons. Phys. Rev. B 54, 16337–16340 (1996).

    Article  Google Scholar 

  15. Andreani, L. C., Pavarini, E., Liviotti, E., Santini, P. & Amoretti, G. Competition between Kondo effect and magnetic interaction in Kondo systems. Phys. B Condens. Matter 230, 523–528 (1997).

    Article  Google Scholar 

  16. Yamamoto, S. J. & Si, Q. Metallic ferromagnetism in the Kondo lattice. Proc. Natl Acad. Sci. USA 107, 15704–15707 (2010).

    Article  Google Scholar 

  17. Misiorny, M., Hell, M. & Wegewijs, M. R. Spintronic magnetic anisotropy. Nat. Phys. 9, 801–805 (2013).

    Article  Google Scholar 

  18. Wang, M. X., Zhang, Y., Zhao, X. X. & Zhao, W. S. Tunnel junction with perpendicular magnetic anisotropy: status and challenges. Micromachines 6, 1023–1045 (2015).

    Article  Google Scholar 

  19. May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Article  Google Scholar 

  20. Zhang, H. et al. Itinerant ferromagnetism in van der Waals Fe5–xGeTe2 crystals above room temperature. Phys. Rev. B 102, 064417 (2020).

    Article  Google Scholar 

  21. Kittel, C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541–583 (1949).

    Article  Google Scholar 

  22. Zhang, Y. et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Sci. Adv. 4, eaao6791 (2018).

    Article  Google Scholar 

  23. Zhao, M. et al. Kondo holes in the two-dimensional itinerant Ising ferromagnet Fe3GeTe2. Nano Lett. 21, 6117–6123 (2021).

    Article  Google Scholar 

  24. Ly, T. T. et al. Direct observation of Fe-Ge ordering in Fe5–xGeTe2 crystals and resultant helimagnetism. Adv. Funct. Mater. 31, 2009758 (2021).

    Article  Google Scholar 

  25. Wu, X. et al. Direct observation of competition between charge order and itinerant ferromagnetism in the van der Waals crystal Fe5–xGeTe2. Phys. Rev. B 104, 165101 (2021).

    Article  Google Scholar 

  26. Meng, L. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapour deposition. Nat. Commun. 12, 809 (2021).

    Article  Google Scholar 

  27. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  Google Scholar 

  28. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  29. May, A. F., Bridges, C. A. & McGuire, M. A. Physical properties and thermal stability of Fe5–xGeTe2 single crystals. Phys. Rev. Mater. 3, 104401 (2019).

    Article  Google Scholar 

  30. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  31. Onoda, S., Sugimoto, N. & Nagaosa, N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B 77, 165103 (2008).

    Article  Google Scholar 

  32. Tian, Y., Ye, L. & Jin, X. Proper scaling of the anomalous Hall effect. Phys. Rev. Lett. 103, 087206 (2009).

    Article  Google Scholar 

  33. Kim, D., Lee, C., Jang, B. G., Kim, K. & Shim, J. H. Drastic change of magnetic anisotropy in Fe3GeTe2 and Fe4GeTe2 monolayers under electric field studied by density functional theory. Sci. Rep. 11, 17567 (2021).

    Article  Google Scholar 

  34. Wang, Y. P., Chen, X. Y. & Long, M. Q. Modifications of magnetic anisotropy of Fe3GeTe2 by the electric field effect. Appl. Phys. Lett. 116, 092404 (2020).

    Article  Google Scholar 

  35. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  Google Scholar 

  36. Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020).

    Article  Google Scholar 

  37. Park, S. Y. et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 20, 95–100 (2020).

    Article  Google Scholar 

  38. León-Brito, N., Bauer, E. D., Ronning, F., Thompson, J. D. & Movshovich, R. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2. J. Appl. Phys. 120, 083903 (2016).

    Article  Google Scholar 

  39. Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol. 17, 143–147 (2022).

    Article  Google Scholar 

  40. Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010).

    Article  Google Scholar 

  41. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  Google Scholar 

  42. Mishra, R. et al. Electric-field control of spin accumulation direction for spin-orbit torques. Nat. Commun. 10, 248 (2019).

    Article  Google Scholar 

  43. Soldatov, I. V. & Schafer, R. Selective sensitivity in Kerr microscopy. Rev. Sci. Instrum. 88, 073701 (2017).

    Article  Google Scholar 

  44. Soldatov, I. V. & Schafer, R. Advances in quantitative Kerr microscopy. Phys. Rev. B 95, 014426 (2017).

    Article  Google Scholar 

  45. Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the A3 Foresight Program—Emerging Materials Innovation. We acknowledge the National Natural Science Foundation of China (grant nos. 51861145201 (H.T.Y.), 52072168 (H.T.Y.), 21733001 (H.T.Y.), 91750101 (H.T.Y.), 51732010 (Z. Liu), 52090020 (Y.T.), 52288102 (Y.T.) and 12204232 (F.Q.)), the Joint Funds of the National Natural Science Foundations of China (grant no. U21A2086 (Z. Liu)), the National Key R&D Program of China (grant nos. 2018YFA0306200 (H.T.Y.) and 2021YFA1202901 (J.H.)), the Natural Science Foundation of Jiangsu Province (grant no. BK20220758 (F.Q.)) and KAKENHI grant JP19H05602 (Y.I.) from the Japan Society for the Promotion of Science (JSPS) and JST PRESTO (grant no. JPMJPR19L1 (T.I.)).

Author information

Authors and Affiliations

Authors

Contributions

H.T.Y., Y.I. and L. Wang conceived this project. K.Z., L. Wang, Z. Liu and Y.T. grew the Fe5GeTe2 crystals. A.N. and Y.T. performed structural characterization using scanning transmission electron microscopy. M.T., C.Z., L.Z. and C.Q. fabricated the devices. M.T., J.H., P.C. and Z. Li performed the electrical measurements. X.B. performed thickness characterization using atomic force microscopy. M.T., F.M. and L. Wu performed the polar MOKE measurements. M.T., F.Q., T.I., P.T., H.Z., X.W. and Y.I. analysed the transport data. M.T., F.Q. and H.T.Y. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Toshiya Ideue, Lin Wang or Hongtao Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–4 and Notes 1–17.

Supplementary Video 1

Evolution of magnetic domains for the Fe5GeTe2 flake shown in Figs. 1f and 2a.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Huang, J., Qin, F. et al. Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating. Nat Electron 6, 28–36 (2023). https://doi.org/10.1038/s41928-022-00882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00882-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing