Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Reducing supply risk of critical materials for clean energy via foreign direct investment

Abstract

Existing research on the security of the supply of critical materials for clean energy generally aggregates information at the country level, a practice that obscures the extensive role of foreign direct investment (FDI) in the production of critical materials. FDI refers to an ownership stake in a company or project by an overseas investor. Here we establish a database for global mining of lithium, cobalt, nickel and platinum at company level, covering 240 countries and regions. We show that 47% of lithium, 71% of cobalt, 41% of nickel and 34% of platinum mined in 2019 were under FDI. We then explore how FDI may affect supply risks by proposing a supply risk index that allocates production of the critical materials to the country of origin of investors instead of the country where production is located. We present upper and lower bounds of the supply risk index that reflect scenarios where either all investors or only state investors prioritize the home-country demand, respectively. This study presents an approach for assessing the national supply risks of critical materials, considering the geographical allocation of FDI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locations, operators and shareholders of global FDI-related mines in 2019.
Fig. 2: Material production from a geographical perspective (left) and a company ownership perspective (right).
Fig. 3: Geographical and adjusted trade network of the four clean energy materials in 2019.
Fig. 4: Top 10 supply risk indices.

Similar content being viewed by others

Data availability

The information on country affiliation of companies is from the ORBIS database of Bureau van Dijk58. The ownership hierarchy of mine owners and stakeholders was collected from annual reports, public statements and news reports of relevant companies, consulting groups and information services platforms. Geographical production and international trade of four materials are from the United Nations Comtrade database54, United States Geological Survey Reports14 and our previous studies8,19,36,37,66. Source data are available in Supplementary Information.

References

  1. World Energy Outlook 2021 (International Energy Agency, 2021); https://www.iea.org/reports/world-energy-outlook-2021

  2. 2022 Final List of Critical Minerals (US Geological Survey, Department of the Interior, 2023); https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals

  3. Study on the Critical Raw Materials for the EU 2023 – Final Report (European Commission, 2020); https://op.europa.eu/en/publication-detail/-/publication/57318397-fdd4-11ed-a05c-01aa75ed71a1

  4. The Role of Critical Minerals in Clean Energy Transitions (International Energy Agency, 2021).

  5. Schrijvers, D. et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 155, 104617 (2020).

    Article  Google Scholar 

  6. Tian, X. et al. Features of critical resource trade networks of lithium-ion batteries. Resour. Policy https://doi.org/10.1016/j.resourpol.2021.102177 (2021).

  7. Rui, X., Geng, Y., Sun, X., Hao, H. & Xiao, S. Dynamic material flow analysis of natural graphite in China for 2001–2018. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2021.105732 (2021).

  8. Xun, D. et al. Mapping global fuel cell vehicle industry chain and assessing potential supply risks. Int. J. Hydrogen Energy 46, 15097–15109 (2021).

    Article  CAS  Google Scholar 

  9. Geng, J. et al. Static material flow analysis of neodymium in China. J. Ind. Ecol. 25, 114–124 (2020).

    Article  Google Scholar 

  10. Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    Article  CAS  Google Scholar 

  11. Goldthau, A. & Hughes, L. Protect global supply chains for low-carbon technologies. Nature 585, 28–30 (2020).

    Article  CAS  Google Scholar 

  12. Pell, R. et al. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2, 665–679 (2021).

    Article  Google Scholar 

  13. Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article  Google Scholar 

  14. Mineral Commodity Summaries 2023 (United States Geological Survey, 2023); https://minerals.usgs.gov/minerals/pubs

  15. Sun, X., Liu, Z., Zhao, F. & Hao, H. Global competition in the lithium-ion battery supply chain: a novel perspective for criticality analysis. Environ. Sci. Technol. 55, 12180–12190 (2021).

    Article  CAS  Google Scholar 

  16. Hao, H., Liu, Z., Zhao, F., Geng, Y. & Sarkis, J. Material flow analysis of lithium in China. Resour. Policy 51, 100–106 (2017).

    Article  Google Scholar 

  17. Liu, G. & Muller, D. B. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis. Environ. Sci. Technol. 47, 11873–11881 (2013).

    Article  CAS  Google Scholar 

  18. Nansai, K. et al. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum. Environ. Sci. Technol. 48, 1391–1400 (2014).

    Article  CAS  Google Scholar 

  19. Sun, X., Hao, H., Zhao, F. & Liu, Z. Global lithium flow 1994–2015: implications for improving resource efficiency and security. Environ. Sci. Technol. 52, 2827–2834 (2018).

    Article  CAS  Google Scholar 

  20. Nansai, K. et al. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan. Environ. Sci. Technol. 49, 2022–2031 (2015).

    Article  CAS  Google Scholar 

  21. Sun, X., Hao, H., Hartmann, P., Liu, Z. & Zhao, F. Supply risks of lithium-ion battery materials: an entire supply chain estimation. Mater. Today Energy 14, 100347 (2019).

    Article  Google Scholar 

  22. Yan, W. et al. Rethinking Chinese supply resilience of critical metals in lithium-ion batteries. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.120719 (2020).

  23. Greenwood, M., Wentker, M. & Leker, J. A region-specific raw material and lithium-ion battery criticality methodology with an assessment of NMC cathode technology. Appl. Energy https://doi.org/10.1016/j.apenergy.2021.117512 (2021).

  24. van den Brink, S., Kleijn, R., Sprecher, B. & Tukker, A. Identifying supply risks by mapping the cobalt supply chain. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2020.104743 (2020).

  25. Zhong, W. et al. Structure of international iron flow: based on substance flow analysis and complex network. Resour. Conserv. Recycl. 136, 345–354 (2018).

    Article  Google Scholar 

  26. Li, X. & Gallagher, K. P. Assessing the climate change exposure of foreign direct investment. Nat. Commun. 13, 1451 (2022).

    Article  CAS  Google Scholar 

  27. Global Locations (Livent, 2020); https://livent.com/company-overview/global-locations/#

  28. Trost, J. N. & Dunn, J. B. Assessing the feasibility of the Inflation Reduction Act’s EV critical mineral targets. Nat. Sustain. 6, 639 (2023).

    Article  Google Scholar 

  29. Jain, E. & Obayashi, Y. Lynas gets $134 million funding from Japan to boost output. mining.com https://www.mining.com/web/lynas-gets-134-million-funding-from-japan-to-boost-output/ (2023).

  30. Ericsson, M., Löf, O. & Löf, A. Chinese control over African and global mining—past, present and future. Miner. Econ. 33, 153–181 (2020).

    Article  Google Scholar 

  31. Gulley, A. L., McCullough, E. A. & Shedd, K. B. China’s domestic and foreign influence in the global cobalt supply chain. Resour. Policy 62, 317–323 (2019).

    Article  Google Scholar 

  32. Kaplinsky, R. & Morris, M. Chinese FDI in sub-Saharan Africa: engaging with large dragons. Eur. J. Dev. Res. 21, 551–569 (2009).

    Article  Google Scholar 

  33. Koyama, K. & Krane, J. Energy security through FDI: the legacy of early Japanese investment in the oil sectors of the Persian Gulf. Resour. Policy https://doi.org/10.1016/j.resourpol.2021.102165 (2021).

  34. Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Article  Google Scholar 

  35. Sun, X., Ouyang, M. & Hao, H. Surging lithium price will not impede the electric vehicle boom. Joule 6, 1738–1742 (2022).

    Article  Google Scholar 

  36. Sun, X., Hao, H., Zhao, F. & Liu, Z. Tracing global lithium flow: a trade-linked material flow analysis. Resour. Conserv. Recycl. 124, 50–61 (2017).

    Article  Google Scholar 

  37. Sun, X., Hao, H., Liu, Z., Zhao, F. & Song, J. Tracing global cobalt flow: 1995–2015. Resour. Conserv. Recycl. 149, 45–55 (2019).

    Article  CAS  Google Scholar 

  38. Sun, X., Hao, H., Liu, Z. & Zhao, F. Insights into the global flow pattern of manganese. Resour. Policy 65, 101578 (2020).

    Article  Google Scholar 

  39. Xun, D., Hao, H., Sun, X., Liu, Z. & Zhao, F. End-of-life recycling rates of platinum group metals in the automotive industry: insight into regional disparities. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.121942 (2020).

  40. Herfindahl–Hirschman Index (US Department of Justice, 2018); https://www.justice.gov/atr/herfindahl-hirschman-index

  41. International Trade in Resources: A Biophysical Assessment (United Nations Environment Programme, 2015); https://wedocs.unep.org/20.500.11822/7427

  42. Sustainable Trade in Resources: Global Material Flows, Circularity and Trade (United Nations Environment Programme, 2020); https://www.resourcepanel.org/reports/sustainable-trade-resources

  43. World Investment Report 2023 (United Nations Conference on Trade and Development, 2023); https://unctad.org/system/files/official-document/wir2023_en.pdf

  44. Wang, Q. et al. Urban mining of lithium: prospects, challenges and policy recommendations. Sci. Technol. Rev. 38, 6–15 (2020).

    Google Scholar 

  45. Melin, H. E. et al. Global implications of the EU battery regulation. Science 373, 384–387 (2021).

    Article  CAS  Google Scholar 

  46. Bhargav, A., He, J., Gupta, A. & Manthiram, A. Lithium-sulfur batteries: attaining the critical metrics. Joule 4, 285–291 (2020).

    Article  Google Scholar 

  47. Beuse, M., Steffen, B. & Schmidt, T. S. Projecting the competition between energy-storage technologies in the electricity sector. Joule 4, 2162–2184 (2020).

    Article  CAS  Google Scholar 

  48. Sun, X., Liu, G., Hao, H., Liu, Z. & Zhao, F. Modeling potential impact of COVID-19 pandemic on global electric vehicle supply chain. iScience 25, 103903 (2022).

    Article  CAS  Google Scholar 

  49. Country Codes – ISO 3166 (International Organization for Standardization, 2013); https://www.iso.org/obp/ui/#search

  50. 2015 Minerals Yearbook Cobalt (United States Geological Survey, 2017); https://minerals.usgs.gov/minerals/pubs/commodity/cobalt

  51. 2015 Minerals Yearbook Nickel (United States Geological Survey, 2017); https://minerals.usgs.gov/minerals/pubs/commodity/nickel/

  52. 2016 Minerals Yearbook Lithium (United States Geological Survey, 2018); https://minerals.usgs.gov/minerals/pubs/commodity/lithium/

  53. 2017 Minerals Yearbook Platinum Group Metal (United States Geological Survey, 2020); https://www.usgs.gov/centers/national-minerals-information-center/platinum-group-metals-statistics-and-information

  54. Trade Data (United Nations Comtrade, 2020); https://comtrade.un.org/data/

  55. Trade Statistics (Korea Customs Service, 2020); http://www.customs.go.kr/kcshome/trade

  56. Import and Export Data (China Customs Information Network, 2020); http://www.haiguan.info/

  57. Customs Data Enquiry (Trade Social Networking Service, 2021); https://www.tradesns.com/en

  58. ORBIS - Company Information Across The Globe (Bureau van Dijk, 2020).

  59. Li, P., Liu, Q., Zhou, P. & Li, Y. Mapping global platinum supply chain and assessing potential supply risks. Front. Energy Res. https://doi.org/10.3389/fenrg.2023.1033220 (2023).

  60. Helbig, C. et al. Extending the geopolitical supply risk indicator: application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers. J. Clean. Prod. 137, 1170–1178 (2016).

    Article  CAS  Google Scholar 

  61. Gemechu, E. D., Helbig, C., Sonnemann, G., Thorenz, A. & Tuma, A. Import-based indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments. J. Ind. Ecol. 20, 154–165 (2016).

    Article  Google Scholar 

  62. Nassar, N. T. et al. Evaluating the mineral commodity supply risk of the U.S. manufacturing sector. Sci. Adv. 6, eaay8647 (2020).

    Article  CAS  Google Scholar 

  63. Szpiro, G. G. Hirschman versus Herfindahl: some topological properties for the use of concentration indexes. Math. Soc. Sci. 14, 299–302 (1987).

    Article  Google Scholar 

  64. Worldwide Governance Indicator (World Bank, 2019); http://info.worldbank.org/governance/wgi/index.aspx#home

  65. Julio, M. & Elmira, A. Fraser Institute Annual: Survey of Mining Companies 2022 (Fraser Institute, 2023); https://www.fraserinstitute.org/sites/default/files/annual-survey-of-mining-companies-2022.pdf

  66. Sun, X., Hao, H., Geng, Y., Liu, Z. & Zhao, F. Exploring the potential for improving material utilization efficiency to secure lithium supply for China’s battery supply chain. Fundam. Res. 4, 167–177 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (72122010 to H.H., 72334001 to G.L., 71774100 to H.H., 71991484 to G.L.) and the National Key R&D Program of China (2019YFC1908501 to H.H.).

Author information

Authors and Affiliations

Authors

Contributions

X.S. and H.H. conceived the idea, conducted the analysis and wrote the paper. C.G., T.F. and G.L. wrote sections of the paper and provided guidance on the paper. D.X. and M.E. provided data for the analysis. I-Y.L.H., Z.L. and F.Z. reviewed and edited the paper. H.H. and G.L. supervised the work and secured funding for the project.

Corresponding author

Correspondence to Han Hao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Roderick Eggert, Maria Amélia Enriquez and Yosuke Shigetomi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Discussion and Tables 1–11.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Hao, H., Galeazzi, C. et al. Reducing supply risk of critical materials for clean energy via foreign direct investment. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01329-3

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene