Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water-in-polymer electrolyte with a wide electrochemical window and recyclability

Subjects

Abstract

Aqueous batteries—with water-based electrolytes—provide safe, reliable and affordable energy storage solutions. However, their energy density and cycling life remain uncompetitive owing to the narrow electrochemical window of the aqueous electrolyte. Adding excessive salt to form saturated electrolytes could address this limitation but at other costs. Here we show a water-in-polymer electrolyte that maximizes the amount of water but works across a voltage range as wide as that for highly concentrated electrolytes. At the heart of this formulation is the introduction of a polyacrylamide network that serves to immobilize and thus tame the otherwise reactive H2O molecules. As a result, our polymerized solid aqueous electrolytes with 4.1 m (18 wt% H2O) and 7.6 m (11 wt% H2O) lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt show extended electrochemical windows of 2.7 V and 3.7 V, comparable to those for the 21 m and 40 m saturated counterparts, respectively. The solid-state Li4Ti5O12//LiMn2O4 cell exhibits stable cycling even under a higher loading of cathode (16 mg cm−2) with a lean electrolyte of 7 g Ah1. In addition, up to 80% of the LiTFSI salt can be recycled and the polymer matrix can also be regenerated. Our electrolyte design represents a substantial step forwards towards more sustainable aqueous batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EW tests of WIPSEs and FWIPSEs.
Fig. 2: Interaction of H2O with Li ion and PAM in WIPSEs.
Fig. 3: Hydrogen bonds and Li+–O interaction in WIPSEs.
Fig. 4: Electrochemical performance of WIPSEs and FWIPSEs in solid-state cells.
Fig. 5: Recycling of LiTFSI and regeneration of FWIPSEs.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2220988 and 2245674. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other relevant data supporting the findings of this study are available in this Article and Supplementary Information. Source data are provided with this paper.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Liu, K., Liu, Y. Y., Lin, D. C., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article  Google Scholar 

  3. Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article  Google Scholar 

  4. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232 (2020).

    Article  CAS  Google Scholar 

  6. Wald Cresce, A. & Xu, K. Aqueous lithium-ion batteries. Carbon Energy 3, 721–751 (2021).

    Article  Google Scholar 

  7. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  8. Suo, L. M. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  9. Borodin, O., Self, J., Persson, K. A., Wang, C. & Xu, K. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    Article  CAS  Google Scholar 

  10. Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. Engl. 55, 7136–7141 (2016).

    Article  CAS  Google Scholar 

  11. Chen, L. et al. A 63 m superconcentrated aqueous electrolyte for high-energy Li-ion batteries. ACS Energy Lett. 5, 968–974 (2020).

    Article  CAS  Google Scholar 

  12. Yamada, Y. et al. Hydrate–melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  CAS  Google Scholar 

  13. Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).

    Article  CAS  Google Scholar 

  14. Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  CAS  Google Scholar 

  15. Wang, F. et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2, 927–937 (2018).

    Article  CAS  Google Scholar 

  16. Chen, J. et al. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv. Energy Mater. 10, 1902654 (2020).

    Article  CAS  Google Scholar 

  17. Shang, Y. et al. An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv. Mater. 32, 2004017 (2020).

    Article  CAS  Google Scholar 

  18. Wang, Y. et al. A green asymmetric bicyclic co-solvent molecule for high-voltage aqueous lithium-ion batteries. Adv. Mater. https://doi.org/10.1002/adma.202311009 (2024).

  19. Zhang, J. et al. “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

    Article  CAS  Google Scholar 

  20. Hou, X. et al. Stabilizing the solid–electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 60, 22812–22817 (2021).

    Article  CAS  Google Scholar 

  21. Dong, D., Xie, J., Liang, Z. & Lu, Y.-C. Tuning intermolecular interactions of molecular crowding electrolyte for high-performance aqueous batteries. ACS Energy Lett. 7, 123–130 (2022).

    Article  CAS  Google Scholar 

  22. Hou, X. et al. “Water-in-eutectogel” electrolytes for quasi-solid-state aqueous lithium-ion batteries. Adv. Energy Mater. 12, 2200401 (2022).

    Article  CAS  Google Scholar 

  23. Suo, L. et al. How solid–electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139, 18670–18680 (2017).

    Article  CAS  Google Scholar 

  24. Wang, F. et al. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries. Adv. Energy Mater. 7, 1600922 (2017).

    Article  Google Scholar 

  25. Li, Q. et al. Controlling intermolecular interaction and interphase chemistry enabled sustainable water-tolerance LiMn2O4||Li4Ti5O12 batteries. Angew. Chem. Int. Ed. Engl. 61, e202214126 (2022).

    Article  CAS  Google Scholar 

  26. Zhou, L. et al. Suppressing hydrogen evolution in aqueous lithium-ion batteries with double-site hydrogen bonding. ACS Energy Lett. 8, 40–47 (2023).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5, 162–179 (2022).

    Article  CAS  Google Scholar 

  28. He, X. et al. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nat. Commun. 9, 5320 (2018).

    Article  CAS  Google Scholar 

  29. Wang, F. et al. Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive. Energy Environ. Sci. 9, 3666–3673 (2016).

    Article  CAS  Google Scholar 

  30. Zeng, Z. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018).

    Article  CAS  Google Scholar 

  31. Jaumaux, P. et al. Localized water-in-salt electrolyte for aqueous lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 60, 19965–19973 (2021).

    Article  CAS  Google Scholar 

  32. Dubouis, N. et al. The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

    Article  CAS  Google Scholar 

  33. Chodkiewicz, M. L. et al. Accurate crystal structure of ice VI from X-ray diffraction with Hirshfeld atom refinement. IUCrJ 9, 573–579 (2022).

    Article  CAS  Google Scholar 

  34. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, 1987).

  35. Huang, S., Hou, L., Li, T., Jiao, Y. & Wu, P. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, 2110140 (2022).

    Article  CAS  Google Scholar 

  36. Wu, J., Lin, W., Wang, Z., Chen, S. & Chang, Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28, 7436–7441 (2012).

    Article  CAS  Google Scholar 

  37. Hou, Z. et al. Formation of solid–electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Energy Mater. 10, 1903665 (2020).

    Article  CAS  Google Scholar 

  38. Li, P. et al. Efficiencies of various in situ polymerizations of liquid electrolytes and the practical implications for quasi solid-state batteries. Angew. Chem. Int. Ed. Engl. 62, e202309613 (2023).

    Article  CAS  Google Scholar 

  39. Ye, T. et al. A tissue-like soft all-hydrogel battery. Adv. Mater. 34, 2105120 (2022).

    Article  CAS  Google Scholar 

  40. Suo, L. et al. “Water-in-salt” electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications. J. Mater. Chem. A 4, 6639–6644 (2016).

    Article  CAS  Google Scholar 

  41. Sun, H. et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. Engl. 60, 18335–18343 (2021).

    Article  CAS  Google Scholar 

  42. Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4||Li4Ti5O12 pouch cells. Nat. Energy 7, 186–193 (2022).

    Article  CAS  Google Scholar 

  43. Xie, X. et al. Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. Engl. 62, e202218229 (2023).

    Article  CAS  Google Scholar 

  44. Yang, S. J. et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew. Chem. Int. Ed. Engl. 61, e202214545 (2022).

    Article  CAS  Google Scholar 

  45. Yang, C. et al. Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29, 1701972 (2017).

    Article  Google Scholar 

  46. Jiao, M. et al. A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. Int. Ed. Engl. 62, e202301114 (2023).

    Article  CAS  Google Scholar 

  47. Wang, F., Lin, C.-F., Ji, X., Rubloff, G. W. & Wang, C. Suppression of hydrogen evolution at catalytic surfaces in aqueous lithium ion batteries. J. Mater. Chem. A 8, 14921–14926 (2020).

    Article  CAS  Google Scholar 

  48. Lin, R., Ke, C., Chen, J., Liu, S. & Wang, J. Asymmetric donor–acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 6, 399–417 (2022).

    Article  CAS  Google Scholar 

  49. Ma, Z. et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022).

    Article  Google Scholar 

  50. Becker, M. et al. The hydrotropic effect of ionic liquids in water-in-salt electrolytes. Angew. Chem. Int. Ed. Engl. 60, 14100–14108 (2021).

    Article  CAS  Google Scholar 

  51. Zhu, J. et al. The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv. Funct. Mater. 33, 2301165 (2023).

    Article  CAS  Google Scholar 

  52. Li, W. et al. Thermally depolymerizable polyether electrolytes for convenient and low-cost recycling of LiTFSI. Angew. Chem. Int. Ed. Engl. 61, e202209169 (2022).

    Article  CAS  Google Scholar 

  53. Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019).

    Article  Google Scholar 

  54. Wang, J. et al. Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6, 797–805 (2023).

    Article  CAS  Google Scholar 

  55. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian Inc., 2009).

  56. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  57. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  58. Goerigk, L. & Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011).

    Article  CAS  Google Scholar 

  59. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  60. Merrick, J. P., Moran, D. & Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111, 11683–11700 (2007).

    Article  CAS  Google Scholar 

  61. Lu, T. & Chen, Q. Shermo: a general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 1200, 113249 (2021).

    Article  CAS  Google Scholar 

  62. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  63. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article  CAS  Google Scholar 

  64. Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  65. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  66. Chen, F. & Forsyth, M. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts. Phys. Chem. Chem. Phys. 18, 19336–19344 (2016).

    Article  CAS  Google Scholar 

  67. Chaban, V. V. & Voroshylova, L. V. Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids. J. Phys. Chem. B 119, 6242–6249 (2015).

    Article  CAS  Google Scholar 

  68. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  69. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  70. Buch, V. Growth and structure of amorphous ice condensates: a computational study. II. J. Chem. Phys. 96, 3814–3823 (1992).

    Article  CAS  Google Scholar 

  71. Sato, H. & Hirata, F. Ab initio study of water. II. Liquid structure, electronic and thermodynamic properties over a wide range of temperature and density. J. Chem. Phys. 111, 8545–8555 (1999).

    Article  CAS  Google Scholar 

  72. Buch, V. Molecular structure and OH-stretch spectra of liquid water surface. J. Phys. Chem. B 109, 17771–17774 (2005).

    Article  CAS  Google Scholar 

  73. Prada-Gracia, D., Shevchuk, R. & Rao, F. The quest for self-consistency in hydrogen bond definitions. J. Chem. Phys. 139, 084501 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (2022YFE0202400, 2022YFA1204500 and 2022YFA1204501 to W.Z.), the National Natural Science Foundation of China (21875016, 22179004 and 22261160570 to W.Z., and 22209009 to S.-M.H.) and the Natural Science Foundation of Beijing (2212014 and L223008 to W.Z.). We acknowledge the valuable suggestions from the late J. B. Goodenough of the University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. designed this study. S.-M.H., J.Z., S.H. and L.M. performed the experiments and analysed the experimental results. S.H. performed the theoretical calculations. W.Z. and L.Z. wrote the paper. W.L., Y.Z., X.X., X.Q., X.F. and H.L. supported the experiments and data analysis.

Corresponding authors

Correspondence to Liqun Zhang or Weidong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figs. 1–39 and Supplementary Tables 1–3.

Reporting Summary

Supplementary Video 1

The solid-state aqueous pouch cell under folding and cutting.

Source data

Source Data Fig. 1

Electrochemical window results.

Source Data Fig. 2

Simulation results of the interaction of H2O with Li+ and PAM.

Source Data Fig. 3

Simulation and experimental study on hydrogen bonds and Li+–O interaction.

Source Data Fig. 4

Electrochemical performance of WIPSEs and FWIPSEs in solid-state aqueous Mo6S8//LiMn2O4 and Li4Ti5O12//LiMn2O4 cells.

Source Data Fig. 5

Recycling of LiTFSI from FWIPSEs and regeneration of FWIPSEs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, SM., Zhu, J., He, S. et al. Water-in-polymer electrolyte with a wide electrochemical window and recyclability. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01327-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing