Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Capture of the newly transcribed RNA interactome using click chemistry

Abstract

Application of synthetic nucleoside analogues to capture newly transcribed RNAs has unveiled key features of RNA metabolism. Whether this approach could be adapted to isolate the RNA-bound proteome (RNA interactome) was, however, unexplored. We have developed a new method (capture of the newly transcribed RNA interactome using click chemistry, or RICK) for the systematic identification of RNA-binding proteins based on the incorporation of 5-ethynyluridine into newly transcribed RNAs followed by UV cross-linking and click chemistry-mediated biotinylation. The RNA–protein adducts are then isolated by affinity capture using streptavidin-coated beads. Through high-throughput RNA sequencing and mass spectrometry, the RNAs and proteins can be elucidated globally. A typical RICK experimental procedure takes only 1 d, excluding the steps of cell preparation, 5-ethynyluridine labeling, validation (silver staining, western blotting, quantitative reverse-transcription PCR (qRT-PCR) or RNA sequencing (RNA-seq)) and proteomics. Major advantages of RICK are the capture of RNA-binding proteins interacting with any type of RNA and, particularly, the ability to discern between newly transcribed and steady-state RNAs through controlled labeling. Thanks to its versatility, RICK will facilitate the characterization of the total and newly transcribed RNA interactome in different cell types and conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNAs and their associated RBPs captured by RICK.
Fig. 2: Schematic overview of the RICK workflow and the dynamics of RNA–protein interactions under stimuli.
Fig. 3: Visualization of EU labeling by DAB staining in HeLa cells.
Fig. 4: Gel electrophoresis of eluted proteins from a representative RICK experiment showing the results of experimental and control groups.
Fig. 5: Click chemistry in RICK.
Fig. 6: RICK captures diverse RNA species.
Fig. 7: Analysis of RNAs and proteins captured by RICK.
Fig. 8: Macroscopic appearance and quantification of RNA–protein complexes captured by RICK.
Fig. 9: Assessment of the RBPs captured by RICK with 16 h and short EU pulses.

Similar content being viewed by others

Data availability

RNA-seq data shown in this paper have been deposited in GEO under accession code GSE100756. Source data are provided with this paper. Source data files for other figures can be accessed via the supporting primary research article19.

Code availability

Code used to analyze the RNA-seq data can be accessed under accession code GSE100756 in GEO. Code used to process the MS data has been described in the Procedure steps, and more details are available from the corresponding author upon request.

References

  1. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Jankowsky, E. & Harris, M. E. Specificity and nonspecificity in RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 16, 533–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Castello, A., Hentze, M. W. & Preiss, T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends Endocrinol. Metab. 26, 746–757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lv, Y., Tariq, M., Guo, X., Kanwal, S. & Esteban, M. A. Intricacies in the cross talk between metabolic enzymes, RNA, and protein translation. J. Mol. Cell Biol. 11, 813–815 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. McHugh, C. A., Russell, P. & Guttman, M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15, 203 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nechay, M. & Kleiner, R. E. High-throughput approaches to profile RNA-protein interactions. Curr. Opin. Chem. Biol. 54, 37–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Queiroz, R. M. L. et al. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403 e319 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Urdaneta, E. C. et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nat. Commun. 10, 990 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Asencio, C., Chatterjee, A. & Hentze, M. W. Silica-based solid-phase extraction of cross-linked nucleic acid-bound proteins. Life Sci. Alliance 1, e201800088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shchepachev, V. et al. Defining the RNA interactome by total RNA-associated protein purification. Mol. Syst. Biol. 15, e8689 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim, B., Arcos, S., Rothamel, K. & Ascano, M. Viral crosslinking and solid-phase purification enables discovery of ribonucleoprotein complexes on incoming RNA virus genomes. Nat. Protoc. 16, 516–531 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA. 115, E3879–E3887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, C. et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell 64, 416–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, Q. et al. Poly A-transcripts expressed in HeLa cells. PLoS One 3, e2803 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garibaldi, A., Carranza, F. & Hertel, K. J. Isolation of newly transcribed RNA using the metabolic label 4-thiouridine. Methods Mol. Biol. 1648, 169–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jao, C. Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl Acad. Sci. USA 105, 15779–15784 (2008).

  27. Battich, N. et al. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science 367, 1151–1156 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Tani, H. & Akimitsu, N. Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol. 9, 1233–1238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burger, K. et al. 4-Thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol. 10, 1623–1630 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, J. E., Yi, H., Kim, Y., Chang, H. & Kim, V. N. Regulation of poly(A) tail and translation during the somatic cell cycle. Mol. Cell 62, 462–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L. L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Connell, M. R. et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516, 263–266 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ramanathan, M. et al. RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blenkiron, C. et al. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One 11, e0160440 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Meng, L. et al. Metabolic RNA labeling for probing RNA dynamics in bacteria. Nucleic Acids Res. 48, 12566–12576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods 2, 261–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hong, V., Steinmetz, N. F., Manchester, M. & Finn, M. G. Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjug. Chem. 21, 1912–1916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 3, 153–162 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Ong, S. E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kwon, S. C. et al. The RNA-binding protein repertoire of embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1122–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yagi, M. et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548, 224–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, M. et al. -Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Sci. Adv. 6, eaba1593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Du, J., Cullen, J. J. & Buettner, G. R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 1826, 443–457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Arun, G., Akhade, V. S., Donakonda, S. & Rao, M. R. mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol. Cell Biol. 32, 3140–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castello, A. et al. System-wide identification of RNA-binding proteins by interactome capture. Nat. Protoc. 8, 491–500 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  PubMed  Google Scholar 

  61. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300 (1995).

    Google Scholar 

  62. Danan, C., Manickavel, S. & Hafner, M. PAR-CLIP: a method for transcriptome-wide identification of RNA binding protein interaction sites. Methods Mol. Biol. 1358, 153–173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conrad, T. et al. Serial interactome capture of the human cell nucleus. Nat. Commun. 7, 11212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perez-Perri, J. I. et al. Global analysis of RNA-binding protein dynamics by comparative and enhanced RNA interactome capture. Nat. Protoc. 16, 27–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 11, 1455–1476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paulsen, M. T. et al. Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA. Methods 67, 45–54 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Esteban lab for their support. This work was supported by the National Key Research and Development Program of China (2018YFA0106903, 2016YFA0100102 to M.A.E. and 2016YFA0100701 to X.B.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502 to M.A.E.), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y201967 to X.B.), the Innovative Team Program of the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (2018GZR110103001 to M.A.E.), the National Natural Science Foundation of China (U20A2015, 92068106 to M.A.E. and 31900617 to X.G.), the Joint Research Project of Chinese Academy of Sciences and Japan Society for the Promotion of Science (GJHZ2093 to M.A.E.), the Natural Science Foundation of Guangdong Province (2018B030306042 to X.B.) and the Science and Technology Planning Project of Guangdong Province (2020B1212060052 to M.A.E.).

Author information

Authors and Affiliations

Authors

Contributions

X.B., X.G. and M.A.E. designed the original RICK experimental protocol; X.G., M.T., Y.L., S.K., Y.L. and X.W. performed all the experiments with help from N.L., M.J., J.M., M.Y., J.H. and J.Y; M.A.E. X.G. and X.B. wrote the manuscript with help from M.T., Y.L., S.K., Y.L. and X.W.; X.B. and M.A.E. approved the final version; Z.L., C.W., G.V., D.W., B.Q. and B.Z. provided advice and infrastructural support.

Corresponding authors

Correspondence to Biliang Zhang, Xichen Bao or Miguel A. Esteban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Alfredo Castello and Amanda Garner for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Bao, X. et al. Nat. Methods 15, 213–220 (2018): https://doi.org/10.1038/nmeth.4595

Supplementary information

Source data

Source Data Fig. 3

Unprocessed images.

Source Data Fig. 4

Unprocessed western blot.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Unprocessed images.

Source Data Fig. 9

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Tariq, M., Lai, Y. et al. Capture of the newly transcribed RNA interactome using click chemistry. Nat Protoc 16, 5193–5219 (2021). https://doi.org/10.1038/s41596-021-00609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00609-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing