Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The impact of AlphaFold2 one year on

The greatly improved prediction of protein 3D structure from sequence achieved by the second version of AlphaFold in 2020 has already had a huge impact on biological research, but challenges remain; the protein folding problem cannot be considered solved. We expect fierce competition to improve the method even further and new applications of machine learning to help illuminate proteomes and their many interactions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of average confidence scores for AlphaFold2 models of human proteins with and without homologs available in the PDB.
Fig. 2: Entry Q99558 (MAP3K14) from the EBI AlphaFold Database.
Fig. 3: Ramachandran plots of the ϕ,ψ main chain torsion angles for experimentally determined and AlphaFold2-derived protein structures.

References

  1. Pereira, J. et al. Proteins 89, 1687–1699 (2021).

    Article  CAS  Google Scholar 

  2. Jumper, J. et al. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  3. Tunyasuvunakool, K. et al. Nature 596, 590–596 (2021).

    Article  CAS  Google Scholar 

  4. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. Bioinformatics 23, 1282–1288 (2007).

    Article  CAS  Google Scholar 

  5. Vaswani, A. et al. in Advances in Neural Information Processing Systems 31 (NIPS 2017) Proceedings (ed. Guyon, I. et al.) 5998–6008 (Association for Computing Machinery, 2017).

  6. Fuchs, F. B., Worrall, D. E., Fischer, V. & Welling, M. in Advances in Neural Information Processing Systems 1970–1981 (Curran Associates, 2020).

  7. Taylor, W. R. & Orengo, C. A. J. Mol. Biol. 208, 1–22 (1989).

    Article  CAS  Google Scholar 

  8. Mariani, V., Biasini, M., Barbato, A. & Schwede, T. Bioinformatics 29, 2722–2728 (2013).

    Article  CAS  Google Scholar 

  9. Senior, A. W. et al. Nature 577, 706–710 (2020).

    Article  CAS  Google Scholar 

  10. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  11. van der Lee, R. et al. Chem. Rev. 114, 6589–6631 (2014).

    Article  Google Scholar 

  12. Outeiral, C., Nissley, D. A. & Deane, C. M. Preprint at bioRxiv https://doi.org/10.1101/2021.09.20.461137 (2021).

  13. Akdel, M. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.09.26.461876 (2021).

  14. Diwan, G. D., Gonzalez-Sanchez, J. C., Apic, G. & Russell, R. B. J. Mol. Biol. 433, 167180 (2021).

    Article  CAS  Google Scholar 

  15. Pak, M. A. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.09.19.460937 (2021).

  16. Moffat, L., Greener, J. G. & Jones, D. T. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457549 (2021).

  17. Jendrusch, M., Korbel, J. O. & Sadiq, S. K. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.463937 (2021).

  18. Bryant, P., Pozzati, G. & Elofsson, A. Preprint at bioRxiv https://doi.org/10.1101/2021.09.15.460468 (2021).

  19. Yin, R., Feng, B. Y., Varshney, A. & Pierce, B. G. Preprint at bioRxiv https://doi.org/10.1101/2021.10.23.465575 (2021).

  20. Evans, R. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  21. McCoy, A. J., Sammiti, M. D. & Read, R. J. Preprint at bioRxiv https://doi.org/10.1101/2021.05.18.444614 (2021).

  22. Beckham, K. S. H. et al. Sci. Adv. https://doi.org/10.1126/sciadv.abg9923 (2021).

  23. Leman, J. K. et al. Nat. Methods 17, 665–680 (2020).

    Article  CAS  Google Scholar 

  24. Thornton, J. M., Laskowski, R. A. & Borkakoti, N. Nat. Medicine 27, 1666–1669 (2021).

    Article  CAS  Google Scholar 

  25. Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-021-00407-0 (2021).

  26. Orengo, C. A. et al. Structure 5, 1093–1108 (1997).

    Article  CAS  Google Scholar 

  27. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  28. Cheng, H. et al. PLOS Comput. Biol. 10, e1003926 (2014).

    Article  Google Scholar 

  29. Baek, M. et al. Science 373, 871–876 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge help from R. Laskowski, who generated Fig. 3. J.M.T. acknowledges funding from EMBL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David T. Jones or Janet M. Thornton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, D.T., Thornton, J.M. The impact of AlphaFold2 one year on. Nat Methods 19, 15–20 (2022). https://doi.org/10.1038/s41592-021-01365-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01365-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing