Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA-encoded library-enabled discovery of proximity-inducing small molecules

Abstract

Small molecules that induce protein–protein associations represent powerful tools to modulate cell circuitry. We sought to develop a platform for the direct discovery of compounds able to induce association of any two preselected proteins, using the E3 ligase von Hippel–Lindau (VHL) and bromodomains as test systems. Leveraging the screening power of DNA-encoded libraries (DELs), we synthesized ~1 million DNA-encoded compounds that possess a VHL-targeting ligand, a variety of connectors and a diversity element generated by split-and-pool combinatorial chemistry. By screening our DEL against bromodomains in the presence and absence of VHL, we could identify VHL-bound molecules that simultaneously bind bromodomains. For highly barcode-enriched library members, ternary complex formation leading to bromodomain degradation was confirmed in cells. Furthermore, a ternary complex crystal structure was obtained for our most enriched library member with BRD4BD1 and a VHL complex. Our work provides a foundation for adapting DEL screening to the discovery of proximity-inducing small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Library design and synthesis.
Fig. 2: CIP–DEL screening analysis and evaluation of compounds synthesized off-DNA.
Fig. 3: Correlations between CIP–DEL screening results and off-DNA validation data.
Fig. 4: Ternary complex crystal structure of CIP-1 with BRD4 and VCB.
Fig. 5: CIP–DEL screening against BRD2BD1 and BRDTBD1 with off-DNA profiling of two shared hits.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and Supplementary Information. The X-ray crystal structure for the VCB–CIP-1–BRD4 complex is available on the PDB (code: 8EWV). Source data for Figs. 2h and 5h are provided with the paper. The FASTQ files, containing raw Illumina sequencing data, are available at https://doi.org/10.5281/zenodo.8253891. Source data are provided with this paper.

References

  1. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Haggarty, S. J. et al. Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol. 7, 275–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article  PubMed  Google Scholar 

  8. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  12. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164, 811–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 7, e38430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Matyskiela, M. E. et al. Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex. Nat. Struct. Mol. Biol. 27, 319–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 7, 499–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siriwardena, S. U. et al. Phosphorylation-inducing chimeric small molecules. J. Am. Chem. Soc. 142, 14052–14057 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Henning, N. J. et al. Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat. Chem. Biol. 18, 412–421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W. W. et al. Targeted protein acetylation in cells using heterobifunctional molecules. J. Am. Chem. Soc. 143, 16700–16708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamazoe, S. et al. Heterobifunctional molecules induce dephosphorylation of kinases–a proof of concept study. J. Med. Chem. 63, 2807–2813 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, P. H. et al. Modulation of phosphoprotein activity by phosphorylation targeting chimeras (PhosTACs). ACS Chem. Biol. 16, 2808–2815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sakamoto, K. M. et al. PROTACS: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zengerle, M., Chan, K.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Roy, M. J. et al. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol. 14, 361–368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Schwinn, M. K. et al. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem. Biol. 13, 467–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Martinez, N. J. et al. A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase. Sci. Rep. 8, 9472 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galdeano, C. et al. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) α subunit with in vitro nanomolar affinities. J. Med. Chem. 57, 8657–8663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Min, J.-H. et al. Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Q. et al. Optimization of PROTAC ternary complex using DNA encoded library approach. ACS Chem. Biol. 18, 25–33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung, C.-w et al. Structural insights into PROTAC-mediated degradation of Bcl-xL. ACS Chem. Biol. 15, 2316–2323 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lim, K. S. et al. Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function. J. Chem. Inf. Model. 62, 2316–2331 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Gu, K., Ng, H. K. T., Tang, M. L. & Schucany, W. R. Testing the ratio of two poisson rates. Biom. J. 50, 283–298 (2008).

    Article  PubMed  Google Scholar 

  45. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

    Article  Google Scholar 

  46. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stebbins, C. E., Kaelin, W. G. Jr. & Pavletich, N. P. Structure of the VHL–elongin C–elongin B complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J. Capece, J. Poirier, P. Michaels, C. Rakiec, A. Lindeman, T. Dice and R. Tichkule are gratefully acknowledged for excellent technical and analytical support. B. Hua, C. Gerry, W. Wang, A. Reidenbach, K. Lim, S. Gill, B. Tong, L. Chung, C. Gampe and N. Smith are gratefully acknowledged for their support, guidance and valuable feedback during the preparation of this manuscript. We also thank D. Dovala and M. Romanowski (Novartis Institutes for Biomedical Research) for supplying the protein reagents used in SPR. The research was supported in part by the National Institute of General Medical Sciences (award R35GM127045 to S.L.S.) and by the Novartis Institutes for Biomedical Research (NIBR) Scholar’s Program.

Author information

Authors and Affiliations

Authors

Contributions

J.W.M. conceived the project, designed and synthesized the CIP–DEL library, performed the BRD4 screening, analyzed the data and produced screening hits off-DNA. Y.T.C. performed the BRD2/BRDT screening, synthesized hits off-DNA and profiled the hits from these screens. L.H. and M.V.W. contributed to the design, screening, data analysis and off-DNA hit synthesis. A.T. developed and conducted all NanoBiT, HiBiT, CTG and TR-FRET experiments from the BRD4 screening and oversaw these experiments for BRD2/BRDT compound profiling. G.M. generated and analyzed all SPR data. W.S. and X.M. ran crystallization screens and solved the ternary complex structure. Z.Y.T. contributed to off-DNA compound synthesis. C.W.C. and P.A.C. developed the CIP–DEL data analysis pipeline. S.L. supervised and supported all BRD2/BRDT screening and profiling. S.B., F.B., K.B., F.J.Z. and S.L.S. provided context for the framing of the original goals, supervision, guidance, operational support, assisted in the interpretation of experimental outcomes and made recommendations for a subset of the reported experiments. J.W.M. and S.L.S. wrote the manuscript, and all authors read and edited the paper.

Corresponding authors

Correspondence to Shuang Liu, Frédéric J. Zécri or Stuart L. Schreiber.

Ethics declarations

Competing interests

X.M. is a shareholder of Terremoto Biosciences. C.W.C. is an advisor to Anagenex. P.A.C. is an advisor to nference, Pfizer and Belharra Therapeutics. S.L.S. is a shareholder and serves on the Board of Directors of Jnana Therapeutics and Kojin Therapeutics; is a shareholder and advises Kisbee Therapeutics, Belharra Therapeutics, Magnet Biomedicine, Exo Therapeutics and Eikonizo Therapeutics; advises Vividian Therapeutics, Eisai Co, Ono Pharma Foundation, F-Prime Capital Partners and the Genomics Institute of the Novartis Research Foundation and is a Novartis Faculty Scholar. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Andrea Testa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution of barcode counts for each CIP-DEL library member across each screening condition.

(a) Barcode counts for the beads-only screen. (b) Barcode counts for the BRD4 (-) VHL screen. (c) Barcode counts for the BRD4 (+) VHL screen.

Extended Data Fig. 2 Individual building block barcode counts for each screening condition.

Raw sequencing counts for each building block (x-axis) at each cycle (BB1, BB2, and BB3) are shown for each of the selection conditions (beads only = top row; BRD4 (-) VHL = middle row; BRD4 (+) VHL = bottom row).

Extended Data Fig. 3 CIP-1 ternary complex structural analysis.

(a) Six copies of the ternary complex are present in each asymmetric unit. An overlay of the six ternary complexes shows the structures are highly similar with RMS deviations of 1.06–1.37 Å. (b) The electron density for CIP-1 is well defined in 4 of the 6 complexes of the asymmetric unit. 2Fo – Fc maps contoured at 2.5σ and 1σ are shown for CIP-1 in a ternary complex with well-defined density. (c) BRD4BD1 protein surface with residues colored based on interactions with CIP-1 (blue), VHL (red), or both (purple). CIP-1 is shown in sticks. (d) VHL protein surface with residues colored based on interactions with CIP-1 (blue), BRD4BD1 (red), or both (purple). (e) 2D diagram of CIP-1 interactions with BRD4BD1. (f) 2D diagram of CIP-1 interactions with VHL.

Extended Data Fig. 4 Comparison of the small molecule components of VHL PROTAC ternary complex structures.

(a) Overlaying the VHL binding moieties of ternary complex assemblies, the diverse projection vectors of the connectors and target protein ligands are shown. The initial point of divergence for the bifunctional molecules is the carbon atom following the terminal amide of the VH032 ligand. (b) Comparison of the buried surface area for four VHL-targeting CIPs.

Extended Data Fig. 5 Comparison of the ternary complex assemblies for four VHL-targeting bifunctional degraders.

The first three structures show bromodomains targets (BRD4BD1, BRD4BD2, and SMARCA4BD) and the fourth complex is a non-bromodomain targeting degrader (Bcl-XL). VHL proteins are aligned at the bottom of each structure and the target protein orientation is shown at the top. Key details for each complex are provided in the table. Inset: the three bromodomain containing complexes are overlaid with VHL aligned at the bottom of the structures, highlighting the diverse target protein orientations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figs. 1–21, Supplementary Note, Supplementary References and Spectral Data.

Reporting Summary

Source data

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 5

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, J.W., Chow, Y.T., Hudson, L. et al. DNA-encoded library-enabled discovery of proximity-inducing small molecules. Nat Chem Biol 20, 170–179 (2024). https://doi.org/10.1038/s41589-023-01458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01458-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research