Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity

Abstract

CRISPR–Cas12f nucleases are currently one of the smallest genome editors, exhibiting advantages for efficient delivery via cargo-size-limited adeno-associated virus delivery vehicles. Most characterized Cas12f nucleases recognize similar T-rich protospacer adjacent motifs (PAMs) for DNA targeting, substantially restricting their targeting scope. Here we report the cryogenic electron microscopy structure and engineering of a miniature Clostridium novyi Cas12f1 nuclease (CnCas12f1, 497 amino acids) with rare C-rich PAM specificity. Structural characterizations revealed detailed PAM recognition, asymmetric homodimer formation and single guide RNA (sgRNA) association mechanisms. sgRNA engineering transformed CRISPR–CnCas12f1, which initially was incapable of genome targeting in bacteria, into an effective genome editor in human cells. Our results facilitate further understanding of CRISPR–Cas12f1 working mechanism and expand the mini-CRISPR toolbox.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CnCas12f1 recognizes rare C-rich PAM for dsDNA targeting.
Fig. 2: The overall structure of the CnCas12f1–sgRNA–dsDNA ternary complex.
Fig. 3: Structural differences between the CnCas12f1 and Un1Cas12f1 complexes.
Fig. 4: CnCas12f1 asymmetric homodimer formation mechanisms.
Fig. 5: Molecular mechanisms of C-rich PAM recognition and DNA cleavage.
Fig. 6: sgRNA engineering improves the genome editing activity of CnCas12f1.

Similar content being viewed by others

Data availability

The structure of the CnCas12f1–sgRNA–dsDNA complex has been deposited in the Protein Data Bank under accession code 8HR5. Next-generation sequencing data are available at the National Center for Biotechnology Information Sequence Read Archive under accession codes PRJNA990823, PRJNA967838, PRJNA967688, PRJNA970104 and PRJNA970076. Plasmids can be accessed in Addgene under accession codes 204996 and 204999. Source data are provided with this paper.

References

  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR–Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karvelis, T. et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48, 5016–5023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, Z. et al. Programmed genome editing by a miniature CRISPR–Cas12f nuclease. Nat. Chem. Biol. 17, 1132–1138 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Takeda, S. N. et al. Structure of the miniature type V-F CRISPR–Cas effector enzyme. Mol. Cell 81, 558–570 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, R., Li, Z., Wang, S., Han, R. & Chang, L. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease. Nucleic Acids Res. 49, 4120–4128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. et al. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40, 111418 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, H., Li, Z., Xiao, R. & Chang, L. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat. Struct. Mol. Biol. 27, 1069–1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, X. et al. Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, B. et al. Mechanistic insights into the R-loop formation and cleavage in CRISPR–Cas12i1. Nat. Commun. 12, 3476 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Urbaitis, T. et al. A new family of CRISPR-type V nucleases with C-rich PAM recognition. EMBO Rep. 23, e55481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pausch, P. et al. DNA interference states of the hypercompact CRISPR–CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carabias, A. et al. Structure of the mini-RNA-guided endonuclease CRISPR–Cas12j3. Nat. Commun. 12, 4476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Al-Shayeb, B. et al. Diverse virus-encoded CRISPR–Cas systems include streamlined genome editors. Cell 185, 4574–4586 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schuler, G., Hu, C. & Ke, A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science 376, 1476–1481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kato, K. et al. Structure of the IscB-ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR–Cas9. Nat. Commun. 13, 6719 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bigelyte, G. et al. Miniature type V-F CRISPR–Cas nucleases enable targeted DNA modification in cells. Nat. Commun. 12, 6191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Walton, R. T., Hsu, J. Y., Joung, J. K. & Kleinstiver, B. P. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat. Protoc. 16, 1511–1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurihara, N. et al. Structure of the type V-C CRISPR–Cas effector enzyme. Mol. Cell 82, 1865–1877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR–Cas endonuclease. Cell 167, 1814–1828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Kong, X. et al. Engineered CRISPR–OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14, 2046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsuchida, C. A. et al. Chimeric CRISPR–CasX enzymes and guide RNAs for improved genome editing activity. Mol. Cell 82, 1199–1209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, W. Y. et al. The miniature CRISPR–Cas12m effector binds DNA to block transcription. Mol. Cell 82, 4487–4502 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  43. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  45. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the support from H. Yang at ShanghaiTech University and the Bio-Electron Microscopy facility at ShanghaiTech University for cryo-EM data collections. This work was supported by grants 2022YFC3400200 from the National Key R&D Program of China; LG-QS-202206-05 from the Lingang Laboratory; 22277078, 22077083 and 22207074 from the National Natural Science Foundation of China; 22ZR1480100 and 22YF1428100 from the Shanghai Committee of Science and Technology; and KF-202303 from the Open Research Fund of the National Center for Protein Sciences at Peking University.

Author information

Authors and Affiliations

Authors

Contributions

Q.J. conceived the study. M.S. performed in vitro DNA cleavage, bacterial self-targeting assays and qRT–PCR experiments. F.L., Y.G., W.L., Z.S., C.Z., N.T., J.G. and Z.W. prepared the cryo-EM sample and determined the structure. F.L. performed the PAM depletion and RNA-seq experiments. Y.W. performed the genome editing assay of HEK293T cells. M.S., F.L., Y.W., Z.W. and Q.J. analyzed and discussed the experimental data. M.S., F.L., Y.W., Z.W. and Q.J. prepared the figures and wrote the manuscript. The manuscript was reviewed and approved by all coauthors.

Corresponding authors

Correspondence to Zhaowei Wu or Quanjiang Ji.

Ethics declarations

Competing interests

Q.J., M.S. and Y.W. have filed a patent application related to this work through ShanghaiTech University (2023102864248). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Ailong Ke, Yong-Sam Kim and Hiroshi Nishimasu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Tables 1–4

Reporting Summary

Supplementary Video 1

PAM-interacting residue density map

Supplementary Data 1

Statistical source data and unmodified gel images for supplementary figures

Source data

Source Data Figs. 1, 4, 5 and 6

Unmodified gel images for Figs. 1b,d, 4b, 5d,f,h and 6b

Source Data Figs. 1, 4, 5 and 6

Statistical source data for Figs. 1a, 4b, 5d,f,h and 6d–g

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Li, F., Wang, Y. et al. Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nat Chem Biol 20, 180–189 (2024). https://doi.org/10.1038/s41589-023-01420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01420-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing