Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optomechanical realization of the bosonic Kitaev chain

Abstract

The fermionic Kitaev chain is a canonical model featuring topological Majorana zero modes1. We report the experimental realization of its bosonic analogue2 in a nano-optomechanical network, in which the parametric interactions induce beam-splitter coupling and two-mode squeezing among the nanomechanical modes, analogous to hopping and p-wave pairing in the fermionic case, respectively. This specific structure gives rise to a set of extraordinary phenomena in the bosonic dynamics and transport. We observe quadrature-dependent chiral amplification, exponential scaling of the gain with system size and strong sensitivity to boundary conditions. All these are linked to the unique non-Hermitian topological nature of the bosonic Kitaev chain. We probe the topological phase transition and uncover a rich dynamical phase diagram by controlling interaction phases and amplitudes. Finally, we present an experimental demonstration of an exponentially enhanced response to a small perturbation3,4. These results represent the demonstration of a new synthetic phase of matter whose bosonic dynamics do not have fermionic parallels, and we have established a powerful system for studying non-Hermitian topology and its applications for signal manipulation and sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BKC in an optomechanical network.
Fig. 2: Boundary-dependent instability.
Fig. 3: Transport properties and topological phase diagrams of generalized BKCs.
Fig. 4: Experimental demonstration of exponentially enhanced sensing.

Similar content being viewed by others

Data availability

The data in this study are available from the Zenodo repository at https://doi.org/10.5281/zenodo.10279485.

References

  1. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).

    Article  ADS  Google Scholar 

  2. McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018).

    Google Scholar 

  3. Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  6. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article  Google Scholar 

  8. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  10. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article  Google Scholar 

  11. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS  Google Scholar 

  12. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS  Google Scholar 

  13. Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).

    Google Scholar 

  14. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 4005 (2018).

    Article  Google Scholar 

  15. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk–boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  20. Ghatak, A., Brandenbourger, M., Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article  CAS  Google Scholar 

  22. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  23. Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article  CAS  Google Scholar 

  24. Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Chen, C.-W. et al. Mechanical analogue of a Majorana bound state. Adv. Mater. 31, 1904386 (2019).

    Article  CAS  Google Scholar 

  28. Qian, K. et al. Observation of Majorana-like bound states in metamaterial-based Kitaev chain analogs. Phys. Rev. Res. 5, 012012 (2023).

    Article  Google Scholar 

  29. Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yokomizo, K. & Murakami, S. Non-Bloch band theory in bosonic Bogoliubov–de Dennes systems. Phys. Rev. B 103, 165123 (2021).

    Article  ADS  CAS  Google Scholar 

  31. Flynn, V. P., Cobanera, E. & Viola, L. Topology by dissipation: Majorana bosons in metastable quadratic Markovian dynamics. Phys. Rev. Lett. 127, 245701 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  32. Mathew, J. P., Pino, J. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2018).

    Article  ADS  Google Scholar 

  33. Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically-induced squeezing. Nature 606, 82–87 (2021).

    Article  Google Scholar 

  34. Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

    Article  CAS  Google Scholar 

  35. Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  36. Hatano, N. & Nelson, D. R. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56, 8651–8673 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Xiong, Y. Why does bulk boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun. 2, 035043 (2018).

    Article  Google Scholar 

  38. Coulais, C., Fleury, R. & Wezel, J. Topology and broken hermiticity. Nat. Phys. 17, 9–13 (2021).

    Article  CAS  Google Scholar 

  39. Brunelli, M., Wanjura, C. C. & Nunnenkamp, A. Restoration of the non-Hermitian bulk–boundary correspondence via topological amplification. SciPost Phys. 15, 173 (2022).

  40. Porras, D. & Fernández-Lorenzo, S. Topological amplification in photonic lattices. Phys. Rev. Lett. 122, 143901 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett. 127, 213601 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  42. Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and skin effect. Phys. Rev. Lett. 130, 203605 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  43. Yuan, H. et al. Non-Hermitian topolectrical circuit sensor with high sensitivity. Adv. Sci. 10, 2301128 (2023).

    Article  Google Scholar 

  44. Parto, M., Leefmans, C., Williams, J. & Marandi, A. Enhanced sensitivity via non-Hermitian topology. Preprint at arxiv.org/abs/2305.03282 (2023).

  45. Könye, V. et al. Non-Hermitian topological ohmmeter. Preprint at arxiv.org/abs/2308.11367 (2023).

  46. Bardyn, C. E. & Imamoglu, A. Majorana-like modes of light in a one-dimensional array of nonlinear cavities. Phys. Rev. Lett. 109, 253606 (2012).

    Article  ADS  PubMed  Google Scholar 

  47. Barlas, Y. & Prodan, E. Topological braiding of non-Abelian midgap defects in classical metamaterials. Phys. Rev. Lett. 124, 146801 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Lee, G., Jin, T., Wang, Y.-X., McDonald, A. & Clerk, A. Entanglement phase transition due to reciprocity breaking without measurement or post-selection. PRX Quantum 5, 010313 (2023).

  50. Busnaina, J. H. et al. Quantum simulation of the bosonic Kitaev chain. Preprint at https://arxiv.org/abs/2309.06178 (2023).

  51. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  52. Weaver, M. J. et al. Coherent optomechanical state transfer between disparate mechanical resonators. Nat. Commun. 8, 824 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Shkarin, A. B. et al. Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112, 013602 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Meystre, P. & Sargent, M. Elements of Quantum Optics 4th edn (Springer, 2007).

Download references

Acknowledgements

We acknowledge A. A. Clerk for discussions. M.B. acknowledges funding from the Swiss National Science Foundation (Grant No. PCEFP2_194268). J.d.P. acknowledges financial support from the ETH Fellowship programme (Grant No. 20-2 FEL-66). This work is part of the research programme of the Netherlands Organisation for Scientific Research. It is supported by the European Research Council (Starting Grant No. 759644-TOPP).

Author information

Authors and Affiliations

Authors

Contributions

J.J.S. and E.V. conceived the project. J.J.S. fabricated the sample, developed the experimental methods, performed the experiments and analysed the data. C.C.W., M.B., J.d.P. and A.N. developed the theory with input from J.J.S. and E.V. All authors contributed to the interpretation of the results and writing the manuscript. E.V. and A.N. supervised the work.

Corresponding author

Correspondence to Ewold Verhagen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xin-You Lü, Weijian Chen and Haitan Xu for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Topological phase diagrams for varying chain lengths.

These panels show the calculated end-to-end gain \({\chi }_{{x}_{1}\to {x}_{N}}\) for finite open chains of length N = 4 (panel (a), corresponding to Fig. 3c), N = 10 (b), and N = 20 (c), as a function of phase φ and squeezing amplitude λ/J for J/γ = 5/16. As in Fig. 3c, the dashed lines depict the phase boundaries, determined by the structure (point gap and winding of origin) of the complex spectrum for an infinite chain under PBC. We recognize that the conditions for which the end-to-end gain exceeds unity align closely with the topological phase boundary that marks spectral winding of the origin. Slight deviations between those two are observed for smaller chains near φ = 0 and φ = π/2, and are thus associated with finite size effects. Still, the general structure of the phase diagram of the infinite chain is clearly recognized in the end-to-end gain for N = 4.

Extended Data Fig. 2 Experimental frequency accuracy.

(a) Thermomechanical reference spectra. Before each experimental run, a set of thermomechanical spectra is taken, with modulations off, to determine the value of the mechanical resonance frequencies ωj. A typical set is shown. Spectra are averaged over 50 runs and fitted by a Lorentzian function, with uncertainty (standard deviation) in the extracted ωj’s (grey dashed lines) between σω,fit/(2π) = 20 − 24 Hz, estimated from the fit residuals. (b) Frequency stability of the mechanical modes. Resonator frequencies ωj are extracted from thermomechanical resonance spectra, measured repeatedly over a duration of 90s. Error bars denote the ± 2σ fit uncertainty interval estimated from residuals. Over time, fluctuations in ωj are observed with standard deviation σω,fluct/(2π) = 43 − 64 Hz, depending on the mode. Correlated fluctuations across the modes indicate a common origin, that we attribute to fluctuations in the optical spring effect. This is compatible with the observation that mechanical modes with higher index and lower optomechanical couplings g0,j experience smaller frequency fluctuations.

Extended Data Fig. 3 Bar chart depiction of response matrices.

(a) Bar chart representation of the susceptibility matrices \({(\gamma {\chi }_{jk})}^{2}/4\) plotted in Fig. 1d, for G = 0.75, G = 1.0, and G = 1.25. (b) The same data as in (a), depicted in a basis of rotated quadratures chosen to numerically minimize the weight of the off-diagonal blocks. The close correspondence between (a) and (b) illustrates that the original (unrotated) calibration of quadratures was performed accurately, and represents the quadrature sensitivity of the response optimally.

Extended Data Fig. 4 Inferred experimental dynamical matrices.

The dynamical matrix \({{\mathcal{M}}}_{a}\) describing the evolution of mode operators \({a}_{j},{a}_{j}^{\dagger }\) is inferred from the measured susceptibility matrix χ through \({{\mathcal{M}}}_{a}={{\mathcal{T}}}^{-1}{({\rm{i}}\chi )}^{-1}{\mathcal{T}}\), where \({\mathcal{T}}\) is the matrix that transforms from mode basis \(\{{a}_{j},{a}_{j}^{\dagger }\}\) to the quadrature basis {xj, pj}. A perfect bosonic Kitaev chain has purely imaginary \({{\mathcal{M}}}_{a}\), that is, no on-site detunings and purely imaginary coupling rates. In our experiments, the real part of the diagonal elements of \({{\mathcal{M}}}_{a}\) indicates a small residual detuning (averaged across the four participating modes) of 3%, 5% and 7% of the mechanical linewidth γ for G = 0.75, 1, 1.25, respectively. The first two modes have higher optomechanical couplings g0 and are therefore more susceptible to fluctuations and nonlinearities in the optical spring effect.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slim, J.J., Wanjura, C.C., Brunelli, M. et al. Optomechanical realization of the bosonic Kitaev chain. Nature 627, 767–771 (2024). https://doi.org/10.1038/s41586-024-07174-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07174-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing