Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communications Arising
  • Published:

Elasticity of lower-mantle bridgmanite

A Brief Communications Arising to this article was published on 19 December 2018

The Original Article was published on 13 March 2017

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cij sensitivity to the velocities and number of measured phonon directions of single-crystal bridgmanite in two crystallographic orientations used in ref. 3 at 40.17 GPa.
Fig. 2: Derived full elastic constants of (Al,Fe)-bearing bridgmanite at high pressure.
Fig. 3: VP and VS profiles of the (Al,Fe)-bearing bridgmanite (Mg0.9Fe0.1Si0.9Al0.1)O3 in the lower mantle.

References

  1. Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).

    Article  ADS  CAS  Google Scholar 

  2. Lin, J. F., Speziale, S., Mao, Z. & Marquardt, H. Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev. Geophys. 51, 244–275 (2013).

    Article  ADS  Google Scholar 

  3. Kurnosov, A., Marquardt, H., Frost, D., Boffa Ballaran, T. & Ziberna, L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 543, 543–546 (2017); Author Correction Nature 558, E3 (2018).

    Article  ADS  CAS  Google Scholar 

  4. Dziewonski, A. M. & Anderson, D. L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  5. Li, B. S. & Zhang, J. Z. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys. Earth Planet. Inter. 151, 143–154 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Wentzcovitch, R., Karki, B., Cococcioni, M. & De Gironcoli, S. Thermoelastic properties of MgSiO3-perovskite: insights on the nature of the Earth’s lower mantle. Phys. Rev. Lett. 92, 018501 (2004).

    Article  ADS  CAS  Google Scholar 

  7. Sinogeikin, S. V., Zhang, J. & Bass, J. D. Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy. Geophys. Res. Lett. 31, L06620 (2004).

    Article  ADS  Google Scholar 

  8. Murakami, M., Sinogeikin, S. V., Hellwig, H., Bass, J. D. & Li, J. Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet. Sci. Lett. 256, 47–54 (2007).

    Article  ADS  CAS  Google Scholar 

  9. Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

    Article  ADS  CAS  Google Scholar 

  10. Jackson, J. M., Zhang, J., Shu, J., Sinogeikin, S. V. & Bass, J. D. High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: implications for lateral heterogeneity in Earth’s lower mantle. Geophys. Res. Lett. 32, L21305 (2005).

    Article  ADS  Google Scholar 

  11. Fu, S. et al. Abnormal elasticity of Fe-bearing bridgmanite in the Earth’s lower mantle. Geophys. Res. Lett. 45, 4725–4732 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Yoneda, A. et al. Elastic anisotropy of experimental analogues of perovskite and post-perovskite help to interpret D′′ diversity. Nat. Commun. 5, 3453 (2014).

    Article  Google Scholar 

  13. Abramson, E., Brown, J., Slutsky, L. & Zaug, J. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res. Solid Earth 102, 12253–12263 (1997).

    Article  Google Scholar 

  14. Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004).

    Article  ADS  CAS  Google Scholar 

  15. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Article  ADS  Google Scholar 

  16. Yeganeh-Haeri, A. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite. Phys. Earth Planet. Inter. 87, 111–121 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Fukui, H. et al. Effect of cation substitution on bridgmanite elasticity: a key to interpret seismic anomalies in the lower mantle. Sci. Rep. 6, 33337 (2016).

    Article  ADS  CAS  Google Scholar 

  18. Karki, B. et al. Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures. Am. Mineral. 82, 635–638 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Li, L. et al. Elasticity of (Mg,Fe)(Si,Al)O3-perovskite at high pressure. Earth Planet. Sci. Lett. 240, 529–536 (2005).

    Article  ADS  CAS  Google Scholar 

  20. Oganov, A. R., Brodholt, J. P. & Price, G. D. Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet. Sci. Lett. 184, 555–560 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Chantel, J., Frost, D. J., McCammon, C. A., Jing, Z. C. & Wang, Y. B. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett. 39, L19307 (2012).

    Article  ADS  Google Scholar 

  22. Shukla, G., Cococcioni, M. & Wentzcovitch, R. M. Thermoelasticity of Fe3+- and Al-bearing bridgmanite: effects of iron spin crossover. Geophys. Res. Lett. 43, 5661–5670 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.-F.L. initiated the project. Z.M. performed the data processing using the covariance matrix. J.Y. and S.F. performed the sensitivity test analysis. Z.M. and S.F. performed elasticity modelling and error analysis. S.F. prepared the draft Supplementary Information. J.-F.L. wrote the manuscript and all authors participated in the manuscript revision.

Corresponding author

Correspondence to Jung-Fu Lin.

Ethics declarations

Competing interests

Declared none.

Extended data figures and tables

Extended Data Fig. 1 Relationship between the uncertainties of the reported elastic constants and our calculated sensitivity of wave velocities for a chosen crystallographic (100) orientation as well as the number of measured phonon directions.

ad, The azimuthal angle between two adjacent phonon directions is 10°. Error bars in bd represent standard deviations (1σ) of the elastic constants. Data on the elastic constants are from ref. 6.

Extended Data Fig. 2 Modelling the acoustic velocity of bridgmanite to derive Cij at 11.66 GPa.

Error bars are not shown when smaller than the symbols. Filled data points are the velocity data from Kurnosov et al.3; the dashed lines are velocity-fitting curves from Kurnosov et al.3; and the solid lines are velocity-fitting curves using the Cij derived from the covariance matrix analysis in this study. Red, VP; green, VS1; blue, VS2. The orientations of the crystal platelets are given in parentheses.

Extended Data Fig. 3 Modelling the acoustic velocity of bridgmanite to derive Cij at 31.76 GPa.

Vertical lines represent standard deviations (+1σ) and are not shown when smaller than symbols. Solid data points are velocity data from Kurnosov et al.3; the dashed lines are velocity-fitting curves from Kurnosov et al.3; and the solid lines are velocity-fitting curves using the Cij derived from the covariance matrix analysis in this study. Red, VP; green, Vs1; blue, Vs2. The orientations of the crystal platelets are given in parentheses.

Extended Data Fig. 4 Adiabatic bulk modulus and shear modulus of bridgmanite (Mg0.9Fe0.1Si0.9Al0.1)O3 at high pressure.

a, KS; b, G. Red data points are results using our obtained full elastic constants (Cij); black data points are data reported in Kurnosov et al.3. Black and red dashed lines are the best fits to data from Kurnosov et al.3 and this study, respectively. Error bars represent standard deviations (1σ) and are not shown when smaller than the symbols. In this study, the adiabatic bulk modulus at ambient conditions (KS0) is 250(1) GPa, with the pressure derivative of KS at 300 K (KS) = 3.2(2), while the shear modulus at ambient conditions (G0) is 159(1) GPa, with the pressure derivative of G0 at 300 K (G′) = 2.2(1).

Extended Data Fig. 5 Comparison of elastic constants of single-crystal bridgmanite as a function of pressure.

Bgm, MgSiO3 bridgmanite; Fe10-Al10-Bgm, (Al,Fe)-bearing bridgmanite with a composition of (Mg0.9Fe0.1Si0.9Al0.1)O3. Error bars represent standard deviations (1σ) and are not shown when smaller than the symbols. Symbols indicate experimental results from the literature; lines indicate theoretical calculations3,6,7,16,17,18,19,20. The filled red circles represent the derived elastic constants in this study using the raw velocity data in Kurnosov et al.3.

Extended Data Fig. 6 Comparison of aggregate compressional and shear wave velocities of single-crystal and polycrystalline bridgmanite at high pressure.

Symbols and solid lines represent experimental results from the literature; dashed lines indicate theoretical calculations3,6,7,8,9,10,11,16,17,18,21,22. The solid red circles are the calculated velocities of (Al,Fe)-bearing bridgmanite using the elastic constants derived in this study (Extended Data Fig. 5), while open black circles are from Kurnosov et al.3. Error bars represent standard deviations (1σ) and are not shown when smaller than the symbols.

Supplementary information

Supplementary Methods

The Supplementary Methods consist of calculation on the sensitivity of wave velocity to variation of elastic constants, uncertainty evaluation on the derived elastic constants, derivations of elasticity from single crystals to aggregates

Supplementary Table 1

Derived full elastic constants of bridgmanite (Mg0.9Fe0.1Si0.9Al0.1)O3 at high pressure in this study using the raw velocity data in Kurnosov et al.3 and the covariance matrix analysis

Supplementary Table 2

Covariance matrix (in GPa2) of elastic constants at 0.48 GPa

Supplementary Table 3

Covariance matrix (in GPa2) of elastic constants at 11.66 GPa

Supplementary Table 4

Covariance matrix (in GPa2) of elastic constants at 15.89 GPa

Supplementary Table 5

Covariance matrix (in GPa2) of elastic constants at 21.25 GPa

Supplementary Table 6

Covariance matrix (in GPa2) of elastic constants at 25.06 GPa

Supplementary Table 7

Covariance matrix (in GPa2) of elastic constants at 31.76 GPa

Supplementary Table 8

Covariance matrix (in GPa2) of elastic constants at 35.44 GPa

Supplementary Table 9

Covariance matrix (in GPa2) of elastic constants at 40.17 GPa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JF., Mao, Z., Yang, J. et al. Elasticity of lower-mantle bridgmanite. Nature 564, E18–E26 (2018). https://doi.org/10.1038/s41586-018-0741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0741-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing