Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eph receptors and ephrins in cancer progression

Abstract

Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the ‘Eph system’) in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor–ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor–ephrin-mediated cell–cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors–ephrins in cancer and conclude with an outlook on promising future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eph receptors and ephrins and their signalling mechanisms.
Fig. 2: Eph receptor and ephrin mutations in tumours.
Fig. 3: Therapeutic targeting of the Eph system in cancer.

Similar content being viewed by others

Data availability

The data that support the graphs shown in Fig. 2 are available in cBioPortal.

References

  1. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Pasquale, E. B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer 10, 165–180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boyd, A. W., Bartlett, P. F. & Lackmann, M. Therapeutic targeting of EPH receptors and their ligands. Nat. Rev. Drug Discov. 13, 39–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Wimmer-Kleikamp, S. H., Janes, P. W., Squire, A., Bastiaens, P. I. & Lackmann, M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J. Cell Biol. 164, 661–666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seiradake, E., Harlos, K., Sutton, G., Aricescu, A. R. & Jones, E. Y. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17, 398–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seiradake, E. et al. Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat. Struct. Mol. Biol. 20, 958–964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Himanen, J. P. et al. Architecture of Eph receptor clusters. Proc. Natl Acad. Sci. USA 107, 10860–10865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang, L. Y., Patel, O., Janes, P. W., Murphy, J. M. & Lucet, I. S. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 38, 6567–6584 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Hattori, M., Osterfield, M. & Flanagan, J. G. Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Janes, P. W. et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Janes, P. W. et al. Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLoS Biol. 7, e1000215 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Solanas, G., Cortina, C., Sevillano, M. & Batlle, E. Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat. Cell Biol. 13, 1100–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Batlle, E. & Wilkinson, D. G. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb. Perspect. Biol. 4, a008227 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Janes, P. W., Nievergall, E. & Lackmann, M. Concepts and consequences of Eph receptor clustering. Semin. Cell Dev. Biol. 23, 43–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Cai, C. et al. ADAM10-cleaved ephrin-A5 contributes to prostate cancer metastasis. Cell Death Dis. 13, 453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schaupp, A. et al. The composition of EphB2 clusters determines the strength in the cellular repulsion response. J. Cell Biol. 204, 409–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Z., Oh, D., Biswas, K. H., Zaidel-Bar, R. & Groves, J. T. Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. eLife 10, e67379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zapata-Mercado, E. et al. The efficacy of receptor tyrosine kinase EphA2 autophosphorylation increases with EphA2 oligomer size. J. Biol. Chem. 298, 102370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ojosnegros, S. et al. Eph-ephrin signaling modulated by polymerization and condensation of receptors. Proc. Natl Acad. Sci. USA 114, 13188–13193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conway, A. et al. Multivalent ligands control stem cell behaviour in vitro and in vivo. Nat. Nanotechnol. 8, 831–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong, M. et al. Spatiomechanical modulation of EphB4-ephrin-B2 signaling in neural stem cell differentiation. Biophys. J. 115, 865–873 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verheyen, T. et al. Spatial organization-dependent EphA2 transcriptional responses revealed by ligand nanocalipers. Nucleic Acids Res. 48, 5777–5787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortina, C. et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat. Genet. 39, 1376–1383 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Miura, K., Nam, J. M., Kojima, C., Mochizuki, N. & Sabe, H. EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol. Biol. Cell 20, 1949–1959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nievergall, E. et al. PTP1B regulates Eph receptor function and trafficking. J. Cell Biol. 191, 1189–1203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wakayama, Y., Miura, K., Sabe, H. & Mochizuki, N. EphrinA1-EphA2 signal induces compaction and polarization of Madin-Darby canine kidney cells by inactivating ezrin through negative regulation of RhoA. J. Biol. Chem. 286, 44243–44253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stahl, S. et al. Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J. Proteome Res. 10, 2566–2578 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Falivelli, G. et al. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands. PLoS ONE 8, e81445 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lisabeth, E. M., Falivelli, G. & Pasquale, E. B. Eph receptor signaling and ephrins. Cold Spring Harb. Perspect. Biol. 5, a009159 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Efazat, G. et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget 7, 60332–60347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu, K. et al. Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5. Proc. Natl Acad. Sci. USA 110, 14634–14639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, Y. et al. The Ephb2 receptor uses homotypic, head-to-tail interactions within its ectodomain as an autoinhibitory control mechanism. Int. J. Mol. Sci. 22, 10473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miao, H. et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16, 9–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, Y. et al. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat. Commun. 6, 7679 (2015). This study shows that serine–threonine kinases of the RSK family, which are activated downstream of ERK, are important regulators of EPHA2 S897 phosphorylation that leads to cancer cell invasion. Thus, oncogenic EPHA2 non-canonical signalling can be induced not only by AKT, as previously known, but also by the ERK–RSK signaling pathway activated, for example, by inflammatory cytokines.

    Article  PubMed  Google Scholar 

  37. Barquilla, A. et al. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol. Biol. Cell 27, 2757–2770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gehring, M. P. & Pasquale, E. B. Protein kinase C phosphorylates the EphA2 receptor on serine 892 in the regulatory linker connecting the kinase and SAM domains. Cell Signal. 73, 109668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lechtenberg, B. C. et al. Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nat. Commun. 12, 7047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pasquale, E. B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Barquilla, A. & Pasquale, E. B. Eph receptors and ephrins: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 55, 465–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Daar, I. O. Non-SH2/PDZ reverse signaling by ephrins. Semin. Cell Dev. Biol. 23, 65–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Kania, A. & Klein, R. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17, 240–256 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Wilkinson, D. G. Interplay of Eph-Ephrin signalling and cadherin function in cell segregation and boundary formation. Front. Cell Dev. Biol. 9, 784039 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bush, J. O. Cellular and molecular mechanisms of EPH/EPHRIN signaling in evolution and development. Curr. Top. Dev. Biol. 149, 153–201 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Nievergall, E., Lackmann, M. & Janes, P. W. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol. Life Sci. 69, 1813–1842 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hanover, G. et al. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep. 42, 112670 (2023). This study integrates genomics, proteomics and bioinformatics to define the signalling networks of individual Eph receptors and ephrins and highlights connections with the EGFR family. A strong cancer-related crosstalk between EPHB6 and EGFR was predicted and experimentally validated.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, X. et al. The role of EphA7 in different tumors. Clin. Transl. Oncol. 24, 1274–1289 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Hua, K. T. et al. miR-519d promotes melanoma progression by downregulating EphA4. Cancer Res. 78, 216–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Macrae, M. et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8, 111–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Sugiyama, N. et al. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. J. Cell Biol. 201, 467–484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunne, P. D. et al. EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin. Cancer Res. 22, 230–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Tsouko, E., Wang, J., Frigo, D. E., Aydogdu, E. & Williams, C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis 36, 1051–1060 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mo, J. et al. Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level. Cell Oncol. 43, 655–667 (2020).

    Article  CAS  Google Scholar 

  56. Yang, N. Y. et al. Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell Signal. 23, 201–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Youngblood, V. M. et al. The Ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer. Cancer Res. 76, 1825–1836 (2016). This paper reports a role for EPHA2 in reprogramming cancer cell metabolism to promote cancer cell fitness through increased glutamine metabolism and de novo lipogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edwards, D. N. et al. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci. Signal. 10, eaan4667 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liang, S. et al. Ligand-independent EphA2 contributes to chemoresistance in small-cell lung cancer by enhancing PRMT1-mediated SOX2 methylation. Cancer Sci. 114, 921–936 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harly, C. et al. Human γδ T cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. Sci. Immunol. 6, eaba9010 (2021). This study shows that interaction with EPHA2 enhances T cell receptor signalling and cytotoxicity against cancer cells. This intercellular communication involves simultaneous EPHA2 interaction with the γδ T cell receptor and EFNA4 and suggests that EPHA2 is part of a cancer stress signature with a role in immunomodulation.

    Article  CAS  PubMed  Google Scholar 

  61. Miao, B. et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 5, 274–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Paraiso, K. H. et al. Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov. 5, 264–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162, 1271–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koch, H., Busto, M. E., Kramer, K., Medard, G. & Kuster, B. Chemical proteomics uncovers EPHA2 as a mechanism of acquired resistance to small molecule EGFR kinase inhibition. J. Proteome Res. 14, 2617–2625 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Amato, K. R. et al. EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer. Cancer Res. 76, 305–318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Z. et al. EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice. Int. J. Cancer 145, 2440–2449 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Cioce, M. & Fazio, V. M. EphA2 and EGFR: friends in life, partners in crime. Can EphA2 be a predictive biomarker of response to anti-EGFR agents? Cancers 13, 700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gu, Z. et al. Anlotinib inhibits tumor angiogenesis and promotes the anticancer effect of radiotherapy on esophageal cancer through inhibiting EphA2. J. Oncol. 2022, 5632744 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Janes, P. W. et al. EphA3 biology and cancer. Growth Factors 32, 176–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Gomez-Maldonado, L. et al. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34, 2609–2620 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Husain, A. et al. Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. J. Hepatol. 77, 383–396 (2022). This study identifies EFNA3–EPHA2 as a hypoxia-driven signalling axis associated with more aggressive hepatocellular carcinoma through effects on cancer cell self-renewal, proliferation and migration that depend on de novo lipogenesis.

    Article  CAS  PubMed  Google Scholar 

  72. Fasanaro, P. et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283, 15878–15883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fleuren, E. D., Zhang, L., Wu, J. & Daly, R. J. The kinome ‘at large’ in cancer. Nat. Rev. Cancer 16, 83–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Ashford, P., Pang, C. S. M., Moya-Garcia, A. A., Adeyelu, T. & Orengo, C. A. A CATH domain functional family based approach to identify putative cancer driver genes and driver mutations. Sci. Rep. 9, 263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Lisabeth, E. M., Fernandez, C. & Pasquale, E. B. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry 51, 1464–1475 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Zhuang, G. et al. Effects of cancer-associated EPHA3 mutations on lung cancer. J. Natl Cancer Inst. 104, 1182–1197 (2012).

    Article  PubMed  Google Scholar 

  78. Lahtela, J. et al. The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. Dis. Model. Mech. 8, 393–401 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mathot, L. et al. Somatic ephrin receptor mutations are associated with metastasis in primary colorectal cancer. Cancer Res. 77, 1730–1740 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, Y., Ahmed, S. & Miller, W. T. Colorectal cancer-associated mutations impair EphB1 kinase function. J. Biol. Chem. 299, 105115 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1110 (2012).

    Article  Google Scholar 

  82. Zhang, Z. et al. EPHA7 mutation as a predictive biomarker for immune checkpoint inhibitors in multiple cancers. BMC Med. 19, 26 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li, S. et al. Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression. Cell Death Dis. 8, e3122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, H., Park, E., Kim, Y. & Park, S. EphrinA5-EphA7 complex induces apoptotic cell death via TNFR1. Mol. Cell 35, 450–455 (2013).

    Article  CAS  Google Scholar 

  85. Jungas, T. et al. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission. J. Cell Biol. 214, 555–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chukkapalli, S. et al. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp. Cell Res. 320, 233–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Noren, N. K., Foos, G., Hauser, C. A. & Pasquale, E. B. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat. Cell Biol. 8, 815–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kuang, S. Q. et al. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia. Blood 115, 2412–2419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rutkowski, R., Mertens-Walker, I., Lisle, J. E., Herington, A. C. & Stephenson, S. A. Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int. J. Cancer 131, E614–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Aslam, M. I. et al. PDGFRβ reverses EphB4 signaling in alveolar rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 111, 6383–6388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Royet, A. et al. Ephrin-B3 supports glioblastoma growth by inhibiting apoptosis induced by the dependence receptor EphA4. Oncotarget 8, 23750–23759 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Raja, E. et al. Tyrosine kinase Eph receptor A6 sensitizes glioma-initiating cells towards bone morphogenetic protein-induced apoptosis. Cancer Sci. 110, 3486–3496 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. El Zawily, A. M. et al. The intrinsically kinase-inactive EPHB6 receptor predisposes cancer cells to DR5-induced apoptosis by promoting mitochondrial fragmentation. Oncotarget 7, 77865–77877 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Amato, K. R. et al. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J. Clin. Invest. 124, 2037–2049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gong, S., Li, Y., Lv, L. & Men, W. Restored microRNA-519a enhances the radiosensitivity of non-small cell lung cancer via suppressing EphA2. Gene Ther. 29, 588–600 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Teramoto, K. & Katoh, H. The cystine/glutamate antiporter xCT is a key regulator of EphA2 S897 phosphorylation under glucose-limited conditions. Cell Signal. 62, 109329 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Harada, K., Hiramoto-Yamaki, N., Negishi, M. & Katoh, H. Ephexin4 and EphA2 mediate resistance to anoikis through RhoG and phosphatidylinositol 3-kinase. Exp. Cell Res. 317, 1701–1713 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Akada, M., Harada, K., Negishi, M. & Katoh, H. EphB6 promotes anoikis by modulating EphA2 signaling. Cell Signal. 26, 2879–2884 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Ji, X. D. et al. EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration. Cancer Res. 71, 1156–1166 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Maddigan, A. et al. EphB receptors trigger Akt activation and suppress Fas receptor-induced apoptosis in malignant T lymphocytes. J. Immunol. 187, 5983–5994 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. DiPrima, M. et al. Identification of Eph receptor signaling as a regulator of autophagy and a therapeutic target in colorectal carcinoma. Mol. Oncol. 13, 2441–2459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McCall, J. L. et al. KSR1 and EPHB4 regulate Myc and PGC1β to promote survival of human colon tumors. Mol. Cell Biol. 36, 2246–2261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kumar, S. R. et al. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am. J. Pathol. 169, 279–293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xia, G. et al. EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene 25, 769–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Spannuth, W. A. et al. Converging evidence for efficacy from parallel EphB4-targeted approaches in ovarian carcinoma. Mol. Cancer Ther. 9, 2377–2388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Merchant, A. A. et al. EPHB4 is a therapeutic target in AML and promotes leukemia cell survival via AKT. Blood Adv. 1, 1635–1644 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Paul, J. M. et al. Targeting synthetic lethality between the SRC kinase and the EPHB6 receptor may benefit cancer treatment. Oncotarget 7, 50027–50042 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Schwill, M. et al. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci. Signal. 12, eaau2875 (2019). This research is a system-wide analysis that identifies Eph receptor activation as part of an adaptive response program that prevents apoptosis in ERBB2-dependent breast cancer cells treated with the ERBB22 inhibitors trastuzumab and ARRY380 (which as single agents cause cell cycle arrest but not apoptosis). Thus, compensatory Eph receptor activation may facilitate escape from apoptosis and the development of acquired resistance to ERBB2-targeted therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, S. D. et al. EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31, 5132–5143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bhatia, S. et al. The effects of ephrinB2 signaling on proliferation and invasion in glioblastoma multiforme. Mol. Carcinog. 59, 1064–1075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Song, W. et al. Phosphorylation of PLCγ1 by EphA2 receptor tyrosine kinase promotes tumor growth in lung cancer. Mol. Cancer Res. 18, 1735–1743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Genander, M. et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 139, 679–692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xiao, Z. et al. EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner: implications for EphB4 as a cancer target. Cancer Biol. Ther. 13, 630–637 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Hamaoka, Y., Negishi, M. & Katoh, H. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal. 28, 937–945 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Brannan, J. M. et al. EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev. Res. 2, 1039–1049 (2009).

    Article  CAS  Google Scholar 

  116. Song, W., Ma, Y., Wang, J., Brantley-Sieders, D. & Chen, J. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res. 74, 2444–2454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, C. et al. EphA2 promotes tumorigenicity of cervical cancer by up-regulating CDK6. J. Cell Mol. Med. 25, 2967–2975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song, W. et al. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene 36, 5620–5630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kaibori, Y., Saito, Y. & Nakayama, Y. EphA2 phosphorylation at Ser897 by the Cdk1/MEK/ERK/RSK pathway regulates M-phase progression via maintenance of cortical rigidity. FASEB J. 33, 5334–5349 (2019).

    Article  PubMed  Google Scholar 

  120. Yu, L. et al. The notch pathway promotes osteosarcoma progression through activation of ephrin reverse signaling. Mol. Cancer Res. 17, 2383–2394 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Krusche, B. et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. eLife 5, e14845 (2016). This study shows that EFNB2 upregulated in glioblastoma CSCs constitutively activates EPHB receptors through homotypic cell–cell interactions, rendering the CSCs insensitive to endothelial EFNB2 to enable perivascular invasion. EFNB2 expressed in CSCs also promotes tumorigenesis by increasing CSC proliferation via anchorage-independent cytokinesis.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xu, C. et al. Adaptive activation of EFNB2/EPHB4 axis promotes post-metastatic growth of colorectal cancer liver metastases by LDLR-mediated cholesterol uptake. Oncogene 42, 99–112 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Sagar, V. et al. EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells. Cell Death Dis. 10, 801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Verschueren, E. et al. The immunoglobulin superfamily receptome defines cancer-relevant networks associated with clinical outcome. Cell 182, 329–344.e19 (2020). This study describes a systematic screen of single transmembrane proteins interacting across cell–cell contacts with 445 receptors of interest in oncology and identifies several Eph receptor and ephrin unconventional ligands, which were confirmed in orthogonal assays.

    Article  CAS  PubMed  Google Scholar 

  125. Ghoshdastider, U. et al. Pan-cancer analysis of ligand-receptor cross-talk in the tumor microenvironment. Cancer Res. 81, 1802–1812 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Adams, R. H. & Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kirschmann, D. A., Seftor, E. A., Hardy, K. M., Seftor, R. E. & Hendrix, M. J. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin. Cancer Res. 18, 2726–2732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, N. et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PLoS ONE 6, e16264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vail, M. E. et al. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res. 74, 4470–4481 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Lennon, F. E. et al. Transactivation of the receptor-tyrosine kinase ephrin receptor A2 is required for the low molecular weight hyaluronan-mediated angiogenesis that is implicated in tumor progression. J. Biol. Chem. 289, 24043–24058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, D. et al. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 7, e156928 (2022). This study discovers a novel mechanism that regulates both normal angiogenesis and tumour angiogenesis and relies on EPHB4 receptor canonical signalling and its downstream target, RAS GTPase-activating protein 1 (RASA1), to promote the export of collagen IV from the endoplasmic reticulum so it can be released by vascular endothelial cells.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sainz-Jaspeado, M. et al. EphA2-induced angiogenesis in Ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. PLoS ONE 8, e71449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bhatia, S. et al. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat. Commun. 13, 3535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Nakayama, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nakayama, A. et al. Ephrin-B2 controls PDGFRβ internalization and signaling. Genes Dev. 27, 2576–2589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rupp, T. et al. Tenascin-C orchestrates glioblastoma angiogenesis by modulation of pro- and anti-angiogenic signaling. Cell Rep. 17, 2607–2619 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Han, B. et al. Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through ephrin A1-EPHA2 forward signaling. Theranostics 12, 4127–4146 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sato, S. et al. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 4, e132447 (2019). This study shows that EPHB2 released in extracellular vesicles from head and neck cancer cells promotes angiogenesis by activating ephrin-B–STAT3 reverse signaling in endothelial cells, even if distant from the cancer cells.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Shiuan, E. & Chen, J. Eph receptor tyrosine kinases in tumor immunity. Cancer Res. 76, 6452–6457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Janes, P. W., Vail, M. E., Ernst, M. & Scott, A. M. Eph receptors in the immunosuppressive tumor microenvironment. Cancer Res. 81, 801–805 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Huang, W. et al. EPHA5 mutation predicts the durable clinical benefit of immune checkpoint inhibitors in patients with lung adenocarcinoma. Cancer Gene Ther. 28, 864–874 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Funk, S. D. et al. EphA2 activation promotes the endothelial cell inflammatory response: a potential role in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 686–695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, A. et al. EphA2 phosphorylates NLRP3 and inhibits inflammasomes in airway epithelial cells. EMBO Rep. 21, e49666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Markosyan, N. et al. Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J. Clin. Invest. 130, 3594–3609 (2019). This study reveals that EPHA2 is a driver of immunosuppression in pancreatic cancer through an EPHA2–TGFβ–COX2 pathway that inhibits T cell infiltration, rendering tumours resistant to immunotherapy.

    Article  Google Scholar 

  147. Yang, W. H. et al. Juxtacrine signaling inhibits antitumor immunity by upregulating PD-L1 expression. Cancer Res. 78, 3761–3768 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pfaff, D. et al. Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes. J. Cell Sci. 121, 3842–3850 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hong, H. N. et al. Cancer-associated fibroblasts promote gastric tumorigenesis through EphA2 activation in a ligand-independent manner. J. Cancer Res. Clin. Oncol. 144, 1649–1663 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Wu, X. et al. Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin. Proteom. 15, 21 (2018).

    Article  Google Scholar 

  153. Curtis, M. et al. Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab. 29, 141–155.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Takasugi, M. et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8, 15729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nakajima, K. et al. Neoadjuvant therapy alters the collagen architecture of pancreatic cancer tissue via ephrin-A5. Br. J. Cancer 126, 628–639 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Kakarla, M. et al. Ephrin B activate Src family kinases in fibroblasts inducing stromal remodeling in prostate cancer. Cancers 14, 2336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Astin, J. W. et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat. Cell Biol. 12, 1194–1204 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Lagares, D. et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat. Med. 23, 1405–1415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lennon, S. et al. Pancreatic tumor microenvironment modulation by EphB4-ephrinB2 inhibition and radiation combination. Clin. Cancer Res. 25, 3352–3365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mueller, A. C. et al. Induction of ADAM10 by radiation therapy drives fibrosis, resistance, and epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 81, 3255–3269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kwak, H. et al. Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. J. Clin. Invest. 126, 4554–4568 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Magnon, C. & Hondermarck, H. The neural addiction of cancer. Nat. Rev. Cancer 23, 317–334 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Madeo, M. et al. Cancer exosomes induce tumor innervation. Nat. Commun. 9, 4284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Furuhashi, S. et al. Ephrin receptor A4 expression enhances migration, invasion and neurotropism in pancreatic ductal adenocarcinoma cells. Anticancer Res. 41, 1733–1744 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Hu, M., Carles-Kinch, K. L., Zelinski, D. P. & Kinch, M. S. EphA2 induction of fibronectin creates a permissive microenvironment for malignant cells. Mol. Cancer Res. 2, 533–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Finney, A. C. et al. EphA2 signaling within integrin adhesions regulates fibrillar adhesion elongation and fibronectin deposition. Matrix Biol. 103–104, 1–21 (2021).

    Article  PubMed  Google Scholar 

  167. Fattet, L. et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev. Cell 54, 302–316.e7 (2020). This study demonstrates that ECM stiffness activates a mechanotransduction pathway in breast cancer that relies on EPHA2 non-canonical signalling to drive EMT, invasion and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Duquet, A. et al. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12. EMBO Mol. Med. 6, 882–901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Birkbak, N. J. & McGranahan, N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37, 8–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Vecchi, M. et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene 27, 2148–2158 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Depner, C. et al. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat. Commun. 7, 12329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wolff, D. W. et al. Phosphorylation of guanosine monophosphate reductase triggers a GTP-dependent switch from pro- to anti-oncogenic function of EPHA4. Cell Chem. Biol. 29, 970–984.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chandrasekera, P. et al. Metalloprotease ADAM9 cleaves ephrin-B ligands and differentially regulates Wnt and mTOR signaling downstream of Akt kinase in colorectal cancer cells. J. Biol. Chem. 298, 102225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kawahara, Y. et al. Ligand-dependent EphB4 activation serves as an anchoring signal in glioma cells. Cancer Lett. 449, 56–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Broggini, T. et al. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 39, 7063–7075 (2020).

    Article  PubMed  Google Scholar 

  176. Yu, J. et al. The EPHB6 receptor tyrosine kinase is a metastasis suppressor that is frequently silenced by promoter DNA hypermethylation in non-small cell lung cancer. Clin. Cancer Res. 16, 2275–2283 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Bulk, E. et al. Mutations of the EPHB6 receptor tyrosine kinase induce a pro-metastatic phenotype in non-small cell lung cancer. PLoS ONE 7, e44591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen, J. et al. Androgen-deprivation therapy with enzalutamide enhances prostate cancer metastasis via decreasing the EPHB6 suppressor expression. Cancer Lett. 408, 155–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Mateo-Lozano, S. et al. Loss of the EPH receptor B6 contributes to colorectal cancer metastasis. Sci. Rep. 7, 43702 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Truitt, L., Freywald, T., DeCoteau, J., Sharfe, N. & Freywald, A. The EphB6 receptor cooperates with c-Cbl to regulate the behavior of breast cancer cells. Cancer Res. 70, 1141–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Locard-Paulet, M. et al. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci. Signal. 9, ra15 (2016). This phosphoproteomic analysis reveals that interaction of breast cancer cells with endothelial cells increases EPHA2 Y772 phosphorylation in the cancer cells, owing to interaction with endothelial EFNA1. This phosphorylation, which inhibits transendothelial migration in vitro and lung colonization in mice, is more transient in breast cancer cells that metastasize, owing to rapid and selective dephosphorylation.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Shiuan, E. et al. Host deficiency in ephrin-A1 inhibits breast cancer metastasis. F1000Res 9, 217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Beauchamp, A. et al. EphrinA1 is released in three forms from cancer cells by matrix metalloproteases. Mol. Cell Biol. 32, 3253–3264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ieguchi, K. et al. ADAM12-cleaved ephrin-A1 contributes to lung metastasis. Oncogene 33, 2179–2190 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Liu, X. et al. Exosomal EphA2 promotes tumor metastasis of triple-negative breast cancer by damaging endothelial barrier. Clin. Exp. Metastasis 40, 105–116 (2022).

    Article  PubMed  Google Scholar 

  186. Aaron, P. A., Jamklang, M., Uhrig, J. P. & Gelli, A. The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cell Microbiol. https://doi.org/10.1111/cmi.12811 (2018).

  187. Darling, T. K. et al. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog. 16, e1008261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Heroult, M. et al. EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinB2. Mol. Cancer Res. 8, 1297–1309 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Batson, J., Maccarthy-Morrogh, L., Archer, A., Tanton, H. & Nobes, C. D. EphA receptors regulate prostate cancer cell dissemination through Vav2-RhoA mediated cell-cell repulsion. Biol. Open 3, 453–462 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lee, P. C. et al. C1GALT1 is associated with poor survival and promotes soluble ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene 39, 2724–2740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Keskin, T. et al. A live single-cell reporter assay links intratumor heterogeneity to metastatic proclivity in Ewing sarcoma. Sci. Adv. 7, eabf9394 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Nakada, M. et al. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res. 64, 3179–3185 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Li, J. J. et al. EphB3 stimulates cell migration and metastasis in a kinase-dependent manner through Vav2-Rho GTPase axis in papillary thyroid cancer. J. Biol. Chem. 292, 1112–1121 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Miao, H. et al. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene 34, 558–567 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Koshikawa, N. et al. Proteolysis of EphA2 converts it from a tumor suppressor to an oncoprotein. Cancer Res. 75, 3327–3339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sachdeva, A. et al. Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br. J. Cancer 127, 1254–1262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Garcia-Monclus, S. et al. EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int. J. Cancer 143, 1188–1201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Asakura, N. et al. Expression of cancer stem cell markers EpCAM and CD90 is correlated with anti- and pro-oncogenic EphA2 signaling in hepatocellular carcinoma. Int. J. Mol. Sci. 22, 8652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gundry, C. et al. Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nat. Commun. 8, 14646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Marco, S. et al. Nuclear-capture of endosomes depletes nuclear G-actin to promote SRF/MRTF activation and cancer cell invasion. Nat. Commun. 12, 6829 (2021). This study shows that activation of the MET hepatocyte growth factor receptor promotes EPHA2 S897 phosphorylation and endocytosis, leading to EPHA2-mediated capture of endosomes on the outer surface of the nucleus. There, an EPHA2–RHOG–cofilin signalling axis promotes actin polymerization that inhibits nuclear import of G-actin, which drives transcription of genes encoding molecules that promote cancer cell scattering and invasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Feng, J. et al. ANXA1 binds and stabilizes EphA2 to promote nasopharyngeal carcinoma growth and metastasis. Cancer Res. 80, 4386–4398 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Mao, L. et al. EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene 40, 3610–3623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Huang, J. et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer cells. Oncogene 33, 2737–2747 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Hiramoto-Yamaki, N. et al. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J. Cell Biol. 190, 461–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang, C. et al. Noncanonical EphA2 signaling is a driver of tumor-endothelial cell interactions and metastatic dissemination in BRAF inhibitor-resistant melanoma. J. Invest. Dermatol. 141, 840–851.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Sheng, Y. et al. Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. Int. J. Cancer 144, 2440–2452 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Wang, L. et al. Ligand-independent EphB1 signaling mediates TGF-β-activated CDH2 and promotes lung cancer cell invasion and migration. J. Cancer 11, 4123–4131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cho, H. J. et al. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 37, 861–872 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Tanaka, M., Sasaki, K., Kamata, R. & Sakai, R. The C-terminus of ephrin-B1 regulates metalloproteinase secretion and invasion of cancer cells. J. Cell Sci. 120, 2179–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Sasabe, E. et al. Ephrin-B2 reverse signaling regulates progression and lymph node metastasis of oral squamous cell carcinoma. PLoS ONE 12, e0188965 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Nakada, M., Drake, K. L., Nakada, S., Niska, J. A. & Berens, M. E. Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res. 66, 8492–8500 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Nakada, M. et al. The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int. J. Cancer 126, 1155–1165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Wang, L. et al. Cell-cell contact-driven EphB1 cis- and trans-signalings regulate cancer stem cells enrichment after chemotherapy. Cell Death Dis. 13, 980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Moyano-Galceran, L. et al. Adaptive RSK-EphA2-GPRC5A signaling switch triggers chemotherapy resistance in ovarian cancer. EMBO Mol. Med. 12, e11177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhao, P. et al. Targeting the KLF5-EphA2 axis can restrain cancer stemness and overcome chemoresistance in basal-like breast cancer. Int. J. Biol. Sci. 19, 1861–1874 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wen, Q. et al. EphA2 affects the sensitivity of oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells. Oncotarget 8, 47998–48011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Huang, C. et al. EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int. J. Cancer 146, 1937–1949 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Fan, J. et al. Chemoresistance transmission via exosome-mediated EphA2 transfer in pancreatic cancer. Theranostics 8, 5986–5994 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yoon, S. et al. EPHB6 mutation induces cell adhesion-mediated paclitaxel resistance via EPHA2 and CDH11 expression. Exp. Mol. Med. 51, 1–12 (2019).

    Article  PubMed  Google Scholar 

  221. Owusu, M. et al. Mapping the human kinome in response to DNA damage. Cell Rep. 26, 555–563.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Alam, S. K. et al. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ. 23, 707–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Peng, J. et al. EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 37, 11959–11971 (2016).

    Article  CAS  Google Scholar 

  224. Kampen, K. R. et al. EphB1 suppression in acute myelogenous leukemia: regulating the DNA damage control system. Mol. Cancer Res. 13, 982–992 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Toosi, B. M. et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours. Oncogene 37, 4073–4093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. El Zawily, A. et al. The EphB6 receptor is overexpressed in pediatric T cell acute lymphoblastic leukemia and increases its sensitivity to doxorubicin treatment. Sci. Rep. 7, 14767 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Gabriel, N. et al. Loss of H3K27 trimethylation promotes radiotherapy resistance in medulloblastoma and induces an actionable vulnerability to BET inhibition. Cancer Res. 82, 2019–2030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bhatia, S. et al. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization. Oncotarget 6, 8929–8946 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Stahl, S. et al. Inhibition of ephrin B3-mediated survival signaling contributes to increased cell death response of non-small cell lung carcinoma cells after combined treatment with ionizing radiation and PKC 412. Cell Death Dis. 4, e454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Staquicini, F. I. et al. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer. J. Biol. Chem. 290, 7345–7359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kaminskyy, V. O. et al. EPHA2 interacts with DNA-PK(cs) in cell nucleus and controls ionizing radiation responses in non-small cell lung cancer cells. Cancers 13, 1010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Martini, G. et al. EPHA2 is a predictive biomarker of resistance and a potential therapeutic target for improving antiepidermal growth factor receptor therapy in colorectal cancer. Mol. Cancer Ther. 18, 845–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Kuo, M. T. et al. Collaboration between RSK-EphA2 and Gas6-Axl RTK signaling in arginine starvation response that confers resistance to EGFR inhibitors. Transl. Oncol. 13, 355–364 (2020).

    Article  PubMed  Google Scholar 

  234. Zhuang, G. et al. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res. 70, 299–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Gai, Q. J. et al. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct. Target. Ther. 7, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ruan, H., Li, S., Bao, L. & Zhang, X. Enhanced YB1/EphA2 axis signaling promotes acquired resistance to sunitinib and metastatic potential in renal cell carcinoma. Oncogene 39, 6113–6128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chen, C. T. et al. Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp. Mol. Med. 52, 497–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Leung, H. W. et al. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res. 81, 3229–3240 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Li, C. et al. Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance. J. Biol. Chem. 295, 5470–5483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Manso, L. et al. Analysis of paired primary-metastatic hormone-receptor positive breast tumors (HRPBC) uncovers potential novel drivers of hormonal resistance. PLoS ONE 11, e0155840 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Bilusic, M. et al. Molecular profiling of exceptional responders to cancer therapy. Oncologist 26, 186–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Noberini, R., Lamberto, I. & Pasquale, E. B. Targeting Eph receptors with peptides and small molecules: progress and challenges. Semin. Cell Dev. Biol. 23, 51–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Choi, Y. et al. Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett. 19, 4467–4470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Martiny-Baron, G. et al. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis 13, 259–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).

    Article  CAS  PubMed  Google Scholar 

  246. Unzue, A. et al. Three stories on Eph kinase inhibitors: from in silico discovery to in vivo validation. Eur. J. Med. Chem. 112, 347–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Le Large, T. Y. et al. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 5, e138290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Wang, H. et al. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep. 34, 108765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yan, H. et al. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat. Commun. 14, 2756 (2023). This study demonstrates that off-target inhibition of EPHA2 non-canonical signaling in liver cells is responsible for the hepatotoxicity of the multi-targeted kinase inhibitor regorafenib, which is an FDA-approved drug used to treat several cancer types. Thus, EPHA2 S897 phosphorylation can confer stress resilience and prevent cytotoxicity not only in cancer cells but also in non-cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Troster, A. et al. NVP-BHG712: effects of regioisomers on the affinity and selectivity toward the EPHrin family. ChemMedChem 13, 1629–1633 (2018).

    Article  PubMed  Google Scholar 

  251. Zhou, Y. et al. Cellular stress induces non-canonical activation of the receptor tyrosine kinase EphA2 through the p38-MK2-RSK signaling pathway. J. Biol. Chem. 299, 104699 (2023). This study describes how different types of cellular stress upregulate EPHA2 S897 phosphorylation through p38 MAPK–MK2–RSK signalling. This pathway can mediate glioblastoma cell migration induced by temozolomide chemotherapy. Furthermore, it could operate not only in cancer cells but also in the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Heinzlmeir, S. et al. Chemical proteomics and structural biology define EPHA2 inhibition by clinical kinase drugs. ACS Chem. Biol. 11, 3400–3411 (2016).

    Article  CAS  PubMed  Google Scholar 

  253. Zhang, C. et al. Structure-guided inhibitor design expands the scope of analog-sensitive kinase technology. ACS Chem. Biol. 8, 1931–1938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Heinzlmeir, S. et al. Chemoproteomics-aided medicinal chemistry for the discovery of EPHA2 inhibitors. ChemMedChem 12, 999–1011 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Kung, A. et al. Development of specific, irreversible inhibitors for a receptor tyrosine kinase EphB3. J. Am. Chem. Soc. 138, 10554–10560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Modukuri, R. K. et al. Discovery of highly potent and BMPR2-selective kinase inhibitors using DNA-encoded chemical library screening. J. Med. Chem. 66, 2143–2160 (2023).

    Article  CAS  PubMed  Google Scholar 

  257. Pan, Y. & Mader, M. M. Principles of kinase allosteric inhibition and pocket validation. J. Med. Chem. 65, 5288–5299 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Lodola, A., Giorgio, C., Incerti, M., Zanotti, I. & Tognolini, M. Targeting Eph/ephrin system in cancer therapy. Eur. J. Med. Chem. 142, 152–162 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Chen, Y., Zhang, H. & Zhang, Y. Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin. Cancer Biol. 56, 37–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  260. Jackson, D. et al. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res. 68, 9367–9374 (2008).

    Article  CAS  PubMed  Google Scholar 

  261. Jacobson, O. et al. PET-guided evaluation and optimization of internalized antibody-drug conjugates targeting erythropoietin-producing hepatoma A2 receptor. J. Nucl. Med. 58, 1838–1844 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Kamoun, W. S. et al. Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nat. Biomed. Eng. 3, 264–280 (2019).

    Article  CAS  PubMed  Google Scholar 

  263. Hasegawa, J. et al. Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol. Ther. 17, 1158–1167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Burvenich, I. J. et al. Molecular imaging and quantitation of EphA2 expression in xenograft models with 89Zr-DS-8895a. J. Nucl. Med. 57, 974–980 (2016).

    Article  CAS  PubMed  Google Scholar 

  265. Annunziata, C. M. et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. N. Drugs 31, 77–84 (2013).

    Article  CAS  Google Scholar 

  266. da Costa, R. et al. Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br. J. Pharmacol. 177, 3127–3146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Dolgin, E. Bicyclic peptide makes targeting EphA2 possible. Cancer Discov. 11, 2951–2952 (2021).

    Article  Google Scholar 

  268. Shitara, K. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J. Immunother. Cancer 7, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Day, B. W. et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23, 238–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  270. Offenhauser, C. et al. EphA3 pay-loaded antibody therapeutics for the treatment of glioblastoma. Cancers 10, 519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Nagano, K. et al. Ephrin receptor A10 is a promising drug target potentially useful for breast cancers including triple negative breast cancers. J. Control. Release 189, 72–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  272. Cha, J. H. et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J. Biol. Chem. 298, 101817 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Zang, X. et al. Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA. Int. J. Nanomed. 11, 3951–3967 (2016).

    Article  CAS  Google Scholar 

  274. Krasnoperov, V. et al. Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am. J. Pathol. 176, 2029–2038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Liu, S. et al. PET imaging of colorectal and breast cancer by targeting EphB4 receptor with 64Cu-labeled hAb47 and hAb131 antibodies. J. Nucl. Med. 54, 1094–1100 (2013).

    Article  CAS  PubMed  Google Scholar 

  276. Stephenson, S. A. et al. Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4. Oncotarget 6, 7554–7569 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Qazi, M. A. et al. Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma. Cancer Res. 78, 5023–5037 (2018).

    Article  CAS  PubMed  Google Scholar 

  278. El Zawily, A. et al. A multipronged unbiased strategy guides the development of an anti-EGFR/EPHA2-bispecific antibody for combination cancer therapy. Clin. Cancer Res. 29, 2686–2701 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Dimasi, N. et al. Development of a trispecific antibody designed to simultaneously and efficiently target three different antigens on tumor cells. Mol. Pharm. 12, 3490–3501 (2015).

    Article  CAS  PubMed  Google Scholar 

  280. Taki, S. et al. A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy. PLoS ONE 10, e0144712 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Hammond, S. A. et al. Selective targeting and potent control of tumor growth using an EphA2/CD3-bispecific single-chain antibody construct. Cancer Res. 67, 3927–3935 (2007).

    Article  CAS  PubMed  Google Scholar 

  282. Ferluga, S., Tome, C. M., Herpai, D. M., D’Agostino, R. & Debinski, W. Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget 7, 59860–59876 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Sharma, P. & Debinski, W. Receptor-targeted glial brain tumor therapies. Int. J. Mol. Sci. 19, 3326 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Riedl, S. J. & Pasquale, E. B. Targeting the Eph system with peptides and peptide conjugates. Curr. Drug Targets 16, 1031–1047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Olson, E. J. et al. Modifications of a nanomolar cyclic peptide antagonist for the EphA4 receptor to achieve high plasma stability. ACS Med. Chem. Lett. 7, 841–846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Gomez-Soler, M. et al. Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. J. Biol. Chem. 294, 8791–8805 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Gambini, L. et al. Structure-based design of novel EphA2 agonistic agents with nanomolar affinity in vitro and in cell. ACS Chem. Biol. 13, 2633–2644 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Gomez-Soler, M. et al. Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. iScience 25, 103870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Baggio, C., Udompholkul, P., Gambini, L. & Pellecchia, M. Targefrin: a potent agent targeting the ligand binding domain of EphA2. J. Med. Chem. 24, 15443–15456 (2022).

    Article  Google Scholar 

  290. Fan, T. et al. A synthetic bivalent peptide ligand of EphB4 with potent agonistic activity. Eur. J. Med. Chem. 244, 114804 (2022).

    Article  CAS  PubMed  Google Scholar 

  291. Noberini, R. et al. PEGylation potentiates the effectiveness of an antagonistic peptide that targets the EphB4 receptor with nanomolar affinity. PLoS ONE 6, e28611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Wu, B. et al. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem. Biol. 22, 876–887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Huang, M. et al. Dual-modality micro-positron emission tomography/computed tomography and near-infrared fluorescence imaging of EphB4 in orthotopic glioblastoma xenograft models. Mol. Imaging Biol. 16, 74–84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Guo, Z. et al. Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int. J. Pharm. 493, 380–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  295. Zhang, R. et al. Peptide-conjugated polymeric micellar nanoparticles for dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts. Biomaterials 32, 5872–5879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Bennett, G. et al. MMAE delivery using the bicycle toxin conjugate BT5528. Mol. Cancer Ther. 19, 1385–1394 (2020). This study describes the development and characterization of BT5528, a bicyclic peptide–toxin conjugate. The rapid uptake and prolonged persistence of BT5528 in tumours, despite its fast renal elimination in animal models, reduces systemic toxicity compared with an antibody–drug conjugate.

    Article  CAS  PubMed  Google Scholar 

  297. Alves, D. S. et al. A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration. eLife 7, e36645 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Petty, A. et al. A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS ONE 7, e42120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Guidetti, L. et al. Protein-protein interaction inhibitors targeting the Eph-ephrin system with a focus on amino acid conjugates of bile acids. Pharmaceuticals 15, 137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Castelli, R. et al. Delta-cholenoyl-amino acids as selective and orally available antagonists of the Eph-ephrin system. Eur. J. Med. Chem. 103, 312–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  301. Rusnati, M. et al. Cholenic acid derivative UniPR1331 impairs tumor angiogenesis via blockade of VEGF/VEGFR2 in addition to Eph/ephrin. Cancer Gene Ther. 29, 908–917 (2022).

    Article  CAS  PubMed  Google Scholar 

  302. Affinito, A. et al. Targeting ephrin receptor tyrosine kinase A2 with a selective aptamer for glioblastoma stem cells. Mol. Ther. Nucleic Acids 20, 176–185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Li, W. et al. Identification of the target protein of the metastatic colorectal cancer-specific aptamer W3 as a biomarker by aptamer-based target cells sorting and functional characterization. Biosens. Bioelectron. 213, 114451 (2022).

    Article  CAS  PubMed  Google Scholar 

  304. Damelin, M. et al. Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin. Cancer Res. 21, 4165–4173 (2015).

    Article  CAS  PubMed  Google Scholar 

  305. Abengozar, M. A. et al. Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood 119, 4565–4576 (2012).

    Article  CAS  PubMed  Google Scholar 

  306. Kertesz, N. et al. The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-ephrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood 107, 2330–2338 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Liu, R. et al. EphB4 as a therapeutic target in mesothelioma. BMC Cancer 13, 269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Ferguson, B. D. et al. The EphB4 receptor tyrosine kinase promotes lung cancer growth: a potential novel therapeutic target. PLoS ONE 8, e67668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. VanderWeele, D. J. et al. A phase II study of sEphB4-HSA in metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 20, 575–580 (2022).

    Article  PubMed  Google Scholar 

  310. Sadeghi, S. et al. EphrinB2 inhibition and pembrolizumab in metastatic urothelial carcinoma. J. Clin. Oncol. 41, 640–650 (2023).

    Article  CAS  PubMed  Google Scholar 

  311. Crnkovic, S. et al. Divergent roles of ephrin-B2/EphB4 guidance system in pulmonary hypertension. Hypertension 80, e17–e28 (2023).

    Article  CAS  PubMed  Google Scholar 

  312. Wang, Y. et al. EPHB4 protein expression in vascular smooth muscle cells regulates their contractility, and EPHB4 deletion leads to hypotension in mice. J. Biol. Chem. 290, 14235–14244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Wang, Y. et al. Reduced blood pressure after smooth muscle EFNB2 deletion and the potential association of EFNB2 mutation with human hypertension risk. Eur. J. Hum. Genet. 24, 1817–1825 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Scalia, P., Pandini, G., Carnevale, V., Giordano, A. & Williams, S. J. Identification of a novel EphB4 phosphodegron regulated by the autocrine IGFII/IR(A) axis in malignant mesothelioma. Oncogene 38, 5987–6001 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Si, R. et al. Discovery of novel protein degraders based on bioorthogonal reaction-driven intracellular self-assembly strategy. Bioorg. Chem. 135, 106497 (2023).

    Article  CAS  PubMed  Google Scholar 

  316. Wagner, M. J. et al. Preclinical mammalian safety studies of EPHARNA (DOPC nanoliposomal EphA2-targeted siRNA). Mol. Cancer Ther. 16, 1114–1123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Landen, C. N. Jr. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918 (2005).

    Article  CAS  PubMed  Google Scholar 

  318. Tanaka, T. et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70, 3687–3696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Nishimura, M. et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 3, 1302–1315 (2013).

    Article  CAS  PubMed  Google Scholar 

  320. Shen, H. et al. Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin. Cancer Res. 19, 1806–1815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Zhang, T. et al. Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer. EBioMedicine 31, 276–286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Hatano, M. et al. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J. Transl. Med. 2, 40 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Yamaguchi, S. et al. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines. Cancer 110, 1469–1477 (2007).

    Article  CAS  PubMed  Google Scholar 

  324. Yamaguchi, S. et al. Dendritic cell-based vaccines suppress metastatic liver tumor via activation of local innate and acquired immunity. Cancer Immunol. Immunother. 57, 1861–1869 (2008).

    Article  CAS  PubMed  Google Scholar 

  325. Chen, H. et al. A novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells. Cell Immunol. 272, 102–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  326. Qin, V. M., D’Souza, C., Neeson, P. J. & Zhu, J. J. Chimeric antigen receptor beyond CAR-T cells. Cancers 13, 404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Yi, Z., Prinzing, B. L., Cao, F., Gottschalk, S. & Krenciute, G. Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Mol. Ther. Methods Clin. Dev. 9, 70–80 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Donovan, L. K. et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 26, 720–731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Hsu, K. et al. Chimeric antigen receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther. 28, 321–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  331. An, Z. et al. Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. Oncoimmunology 10, 1960728 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Kubo, H. et al. Development of non-viral, ligand-dependent, EPHB4-specific chimeric antigen receptor T cells for treatment of rhabdomyosarcoma. Mol. Ther. Oncolytics 20, 646–658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Upadhyaya, P. et al. Anticancer immunity induced by a synthetic tumor-targeted CD137 agonist. J. Immunother. Cancer 9, e001762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Bhatia, S. et al. Inhibition of EphB4-ephrin-B2 signaling reprograms the tumor immune microenvironment in head and neck cancers. Cancer Res. 79, 2722–2735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Torres-Adorno, A. M. et al. Eicosapentaenoic acid in combination with EPHA2 inhibition shows efficacy in preclinical models of triple-negative breast cancer by disrupting cellular cholesterol efflux. Oncogene 38, 2135–2150 (2019).

    Article  CAS  PubMed  Google Scholar 

  336. Bhatia, S. et al. Enhancing radiosensitization in EphB4 receptor-expressing head and neck squamous cell carcinomas. Sci. Rep. 6, 38792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Bhatia, S. et al. Inhibition of EphB4-ephrin-B2 signaling enhances response to cetuximab-radiation therapy in head and neck cancers. Clin. Cancer Res. 24, 4539–4550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, ebaf1230 (2021).

    Article  Google Scholar 

  339. Giladi, A. Digging for treasures in the tumour interactome. Nat. Rev. Cancer 22, 434–435 (2022).

    Article  CAS  PubMed  Google Scholar 

  340. Mason, E. O. et al. Structure of the EphB6 receptor ectodomain. PLoS ONE 16, e0247335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Buraschi, S. et al. Progranulin/EphA2 axis: a novel oncogenic mechanism in bladder cancer. Matrix Biol. 93, 10–24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Lee, H. H. et al. Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat. Commun. 12, 2788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Pradeep, S. et al. Erythropoietin stimulates tumor growth via EphB4. Cancer Cell 28, 610–622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Fukai, J. et al. EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line. Mol. Cancer Ther. 7, 2768–2778 (2008).

    Article  CAS  PubMed  Google Scholar 

  345. Kennedy, S. P. et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 21, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Jorgensen, C. et al. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326, 1502–1509 (2009).

    Article  CAS  PubMed  Google Scholar 

  347. Banerjee, S. L. et al. EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Rep. 40, 111031 (2022).

    Article  CAS  PubMed  Google Scholar 

  348. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  349. Hutchens, T. & Piston, D. W. EphA4 receptor forward signaling inhibits glucagon secretion from α-cells. Diabetes 64, 3839–3851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Volta, F. et al. Glucose homeostasis is regulated by pancreatic β-cell cilia via endosomal EphA-processing. Nat. Commun. 10, 5686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Luxan, G. et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. eLife 8, e45863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Cayuso, J. et al. EphrinB1/EphB3b coordinate bidirectional epithelial-mesenchymal interactions controlling liver morphogenesis and laterality. Dev. Cell 39, 316–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Valenzuela, J. I. & Perez, F. Localized intercellular transfer of ephrin-as by trans-endocytosis enables long-term signaling. Dev. Cell 52, 104–117 e105 (2020).

    Article  CAS  PubMed  Google Scholar 

  354. Pasquale, E. B. Exosomes expand the sphere of influence of Eph receptors and ephrins. J. Cell Biol. 214, 5–7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Goutas, D., Pergaris, A., Goutas, N. & Theocharis, S. Utilizing exosomal-EPHs/ephrins as biomarkers and as a potential platform for targeted delivery of therapeutic exosomes. Int. J. Mol. Sci. 23, 3551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Boissier, P., Chen, J. & Huynh-Do, U. EphA2 signaling following endocytosis: role of Tiam1. Traffic 14, 1255–1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  357. Mertens-Walker, I. et al. EphB4 localises to the nucleus of prostate cancer cells. Exp. Cell Res. 333, 105–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  358. Javier-Torrent, M. et al. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. eLife 8, e43656 (2019).

    Article  Google Scholar 

  359. Weiss, F., Lauffenburger, D. & Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer 22, 157–173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Sun, G. et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J. Cell Biol. 216, 3355–3368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Porazinski, S. et al. EphA2 drives the segregation of Ras-transformed epithelial cells from normal neighbors. Curr. Biol. 26, 3220–3229 (2016).

    Article  CAS  PubMed  Google Scholar 

  362. Volz, C. et al. Inhibition of tumor VEGFR2 induces serine 897 EphA2-dependent tumor cell invasion and metastasis in NSCLC. Cell Rep. 31, 107568 (2020).

    Article  CAS  PubMed  Google Scholar 

  363. Huang, Z., Liu, J., Zhang, C. & Yang, X. Lipofectamine 2000 at transfection dose promotes EphA2 transcription in an HDAC4-dependent manner to reduce its cytotoxicity. Heliyon 8, e12118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Gao, Z. et al. Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-ephrin A1 reverse signaling. Cell Death Dis. 12, 414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Binda, E. et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22, 765–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Hu, A. X. et al. EPH profiling of BTIC populations in glioblastoma multiforme using CyTOF. Methods Mol. Biol. 1869, 155–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  367. Loong, J. H. et al. Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma. J. Clin. Invest. 131, e143377 (2021). This study shows that aberrant fucosylation of EPHA2 and several other proteins, induced by low glucose availability in hepatocellular carcinoma, contributes to deregulation of AKT–mTOR–eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) signalling to drive cancer stemness and drug resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Merlos-Suarez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  369. Chen, Y. L. et al. Ephrin A4-ephrin receptor A10 signaling promotes cell migration and spheroid formation by upregulating NANOG expression in oral squamous cell carcinoma cells. Sci. Rep. 11, 644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Li, Y. et al. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties. FASEB J. 33, 4851–4865 (2019).

    Article  CAS  PubMed  Google Scholar 

  371. Brantley-Sieders, D. M. et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J. Clin. Invest. 118, 64–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  372. Larsen, A. B. et al. Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol. Cancer Res. 5, 283–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  373. Gusenbauer, S., Vlaicu, P. & Ullrich, A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene 32, 3846–3856 (2013).

    Article  CAS  PubMed  Google Scholar 

  374. Paul, M. D., Grubb, H. N. & Hristova, K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: implications for cell signaling. J. Biol. Chem. 295, 9917–9933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Kim, J., Chang, I. Y. & You, H. J. Interactions between EGFR and EphA2 promote tumorigenesis through the action of ephexin1. Cell Death Dis. 13, 528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Bruggemann, Y., Karajannis, L. S., Stanoev, A., Stallaert, W. & Bastiaens, P. I. H. Growth factor-dependent ErbB vesicular dynamics couple receptor signaling to spatially and functionally distinct Erk pools. Sci. Signal. 14, eabd9943 (2021). This study demonstrates that EPHA2 S897 phosphorylation, and hence non-canonical signalling, can be induced by activated EGFR family members located at the plasma membrane, but not those in endosomes, owing to activation of spatially distinct ERK pools that leads to distinct phenotypes.

    Article  PubMed  Google Scholar 

  377. Tamura, Y., Nakamizo, Y., Watanabe, Y., Kimura, I. & Katoh, H. Filamin A forms a complex with EphA2 and regulates EphA2 serine 897 phosphorylation and glioblastoma cell proliferation. Biochem. Biophys. Res. Commun. 597, 64–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  378. Oh, D. et al. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys. J. 121, 1897–1908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Miao, H. et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat. Cell Biol. 3, 527–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  380. Stallaert, W. et al. Contact inhibitory Eph signaling suppresses EGF-promoted cell migration by decoupling EGFR activity from vesicular recycling. Sci. Signal. 11, eaat0114 (2018).

    Article  PubMed  Google Scholar 

  381. Leveque, R. et al. ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Lett. 449, 196–206 (2019).

    Article  CAS  PubMed  Google Scholar 

  382. Srivastava, S. et al. Activation of EPHA2-ROBO1 heterodimer by SLIT2 attenuates non-canonical signaling and proliferation in squamous cell carcinomas. iScience 23, 101692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

The author researched data for the article, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Elena B. Pasquale.

Ethics declarations

Competing interests

The author holds several patents on Eph receptor-targeting peptides.

Peer review

Peer review information

Nature Reviews Cancer thanks Jin Chen, Peter Janes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AI-Driver: aidriver.maolab.org

cBioPortal: cbioportal.org

Integrative Onco Genomics (IntOGen): www.intogen.org

Supplementary information

Glossary

Allosteric inhibitors

Inhibitors that bind to a site different from the active site of an enzyme (the ATP-binding pocket in the case of kinases). Allosteric kinase inhibitors can bind near (type III kinase inhibitor) or far (type IV kinase inhibitor) from the ATP-binding pocket.

Anoikis

Cell death induced by lack of cell–substrate and cell–cell adhesion.

Antibody-dependent cellular cytotoxicity

(ADCC). Immune response causing the death of cells, such as cancer cells, coated with an antibody bound to a cell surface antigen. This involves the binding of Fcγ receptors on natural killer (NK) cells and other immune cells to the Fc portion of the antibody, especially when the antibody lacks fucosylation.

Aptamers

Single-stranded oligonucleotides that bind to target molecules with high affinity and specificity through secondary structural motifs.

Autophagy

Involves the incorporation of cellular components into double-membrane vesicles called autophagosomes, which eventually fuse with lysosomes enabling degradation and recycling of the cellular components.

Cancer stem-like cells

(CSCs). Subpopulations of cancer cells with characteristics similar to stem and progenitor cells, including slow growth and the ability to self-renew and differentiate. Thus, CSCs can survive cancer therapies and drive tumour growth and heterogeneity.

Chimeric antigen receptor

(CAR). Engineered receptor or antibody that can be expressed in T cells, dendritic cells and other immune cells for cancer immunotherapy. CARs recognize a molecule on the surface of another cell, such as a tumour cell, triggering signalling in the immune cell.

Cytokinesis

Ultimate step of cell division, leading to the physical separation of daughter cells at the end of mitosis.

Dependence receptor

Receptor that can mediate signals triggering programmed cell death when not bound to certain ligands.

Epithelial-to-mesenchymal transition

(EMT). Process by which polarized epithelial cells lose cell–cell junctions and attachment to a basement membrane, acquiring a migratory and invasive phenotype characteristic of mesenchymal cells.

Exosomes

Small (30–150 nm) extracellular vesicles that contain proteins, nucleic acids, lipids and metabolites. Produced in the endosomal compartment, exosomes are released from cells and can make contact with and be taken up by other cells.

Inflammasome

Large cytosolic multiprotein complex that forms in response to infection, tissue damage or metabolic imbalance and activates inflammatory caspases.

Long non-coding RNAs

(lncRNAs). Transcripts longer than 200 bp that do not code for proteins. lncRNAs can regulate gene expression by acting as endogenous ‘sponges’ that bind miRNAs, thus preventing miRNA binding to target mRNAs.

MicroRNAs

(miRNAs). Single-stranded small non-coding RNAs, approximately 20 nucleotides long, that function by interacting with target mRNAs to repress translation or promote mRNA cleavage. miRNAs can function as oncogenes or tumour suppressors, and their expression is accordingly upregulated or downregulated in cancer cells.

Neoadjuvant therapy

Chemotherapy, radiotherapy or other therapies given before a main treatment, for example, to shrink a tumour before surgery.

Nonsense-mediated mRNA decay

Mechanism that eliminates mRNAs with a stop codon that prematurely terminates translation.

Polyploidy

State in which a cell has more than two sets of chromosomes.

Proteolysis-targeting chimeras

(PROTACs). Molecules that consist of a ligand for a target protein to be degraded, a linker and a ligand that recruits a E3 ubiquitin ligase triggering proteasomal degradation of the target protein.

Single-chain variable fragment (scFv) antibody

Antibody that contains only the variable (antigen-binding) domain of the light and heavy chains of a monoclonal antibody, typically linked together into a single molecule.

Synthetic lethality

Cell death induced by the concurrent disruption of two (or more) genes but not by the disruption of each individual gene.

Transendocytosis

Process through which a plasma membrane fragment and other material from one cell is taken up by another cell, for example, through internalization of full-length Eph receptor–ephrin complexes assembled at sites of cell–cell contact. Internalization can occur in either the Eph receptor-expressing cell or the ephrin-expressing cells.

Type I kinase inhibitors

Bind to the active conformation of a kinase domain, in which the aspartic acid of the DFG (aspartic acid–phenylalanine–glycine) motif in the activation loop points towards the ATP-binding pocket (DFG-in).

Type II kinase inhibitors

Bind to the inactive kinase conformation, in which the aspartic acid is oriented away from the ATP-binding pocket (DFG-out).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquale, E.B. Eph receptors and ephrins in cancer progression. Nat Rev Cancer 24, 5–27 (2024). https://doi.org/10.1038/s41568-023-00634-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00634-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer