Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of a plasmon-polariton quantum wave packet

Abstract

Plasmon polaritons (plasmons, for simplicity) have become paramount for tailored nanoscale light–matter interaction, and extensive research has been conducted to monitor1,2 and manipulate their spatial3 and spatio-temporal dynamics4. These dynamics result from the superposition of various plasmon modes, which are classical wave packets. Beyond this classical picture, plasmon modes are treated as quasiparticles5,6 and they are considered essential for the realization of future nanoscale quantum functionality7,8,9,10. Implementing and demonstrating such functionality requires access to the quasiparticle’s quantum state to monitor and manipulate its corresponding quantum wave packet dynamics in Hilbert space. Here we report the local detection of nanoscale plasmon quantum wave packets using plasmon-assisted electron emission as a signal in coherent two-dimensional nanoscopy11. The observation of a quantum coherence oscillating at the third harmonic of the plasmon frequency is traced back to the superposition of energetically non-adjacent plasmon occupation number states and is therefore a direct fingerprint of the quantum wave packet. Beyond demonstrating the existence of a plasmon quantum wave packet via the coherence between certain occupation number states and providing an improved model for plasmon-assisted electron emission processes, the results may enable time-dependent probing and manipulation of coupled quantum states and dynamics on the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum model of plasmon-polariton-assisted multi-quantum electron emission from a plasmonic resonator probed by 2D nanoscopy.
Fig. 2: Comparison of measured and simulated rephasing 2D spectra of plasmon-polariton-assisted multi-quantum electron emission.
Fig. 3: Impact of 3ωpp quantum coherences of the plasmon polariton on the rephasing 2D spectrum.

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014).

    Article  ADS  Google Scholar 

  2. Da̧browski, M., Dai, Y. & Petek, H. Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020).

    Article  Google Scholar 

  3. Gjonaj, B. et al. Active spatial control of plasmonic fields. Nat. Photonics 5, 360–363 (2011).

    Article  ADS  Google Scholar 

  4. Aeschlimann, M. et al. Spatiotemporal control of nanooptical excitations. Proc. Natl Acad. Sci. USA 107, 5329–5333 (2010).

    Article  ADS  Google Scholar 

  5. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  6. Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nat. Phys. 5, 470–474 (2009).

    Article  Google Scholar 

  7. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article  Google Scholar 

  8. Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016).

    Article  ADS  Google Scholar 

  9. Vasa, P. & Lienau, C. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photonics 5, 2–23 (2017).

    Article  Google Scholar 

  10. Finkelstein-Shapiro, D. et al. Understanding radiative transitions and relaxation pathways in plexcitons. Chem 7, 1092–1107 (2021).

    Article  Google Scholar 

  11. Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011).

    Article  ADS  Google Scholar 

  12. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  13. Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  14. Franke, S. et al. Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics. Phys. Rev. Lett. 122, 213901 (2019).

    Article  ADS  Google Scholar 

  15. D´Amico, I. et al. Nanoscale quantum optics. Riv. Nuovo Cimento 42, 153–195 (2019).

    Google Scholar 

  16. Huang, L., Xu, L., Woolley, M. & Miroshnichenko, A. E. Trends in quantum nanophotonics. Adv. Quantum Technol. 3, 1900126 (2020).

    Article  Google Scholar 

  17. Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).

    Article  ADS  Google Scholar 

  18. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 8, 719–722 (2013).

    Article  ADS  Google Scholar 

  19. Fasel, S., Halder, M., Gisin, N. & Zbinden, H. Quantum superposition and entanglement of mesoscopic plasmons. New J. Phys. 8, 13 (2006).

    Article  ADS  Google Scholar 

  20. Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563–566 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Tang, L. et al. Quantum tomography of the photon-plasmon conversion process in a metal hole array. Opt. Express 27, 13809–13819 (2019).

    Article  ADS  Google Scholar 

  22. You, C. et al. Observation of the modification of quantum statistics of plasmonic systems. Nat. Commun. 12, 5161 (2021).

    Article  ADS  Google Scholar 

  23. Lehmann, J. et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 85, 2921–2924 (2000).

    Article  ADS  Google Scholar 

  24. Merschdorf, M., Kennerknecht, C. & Pfeiffer, W. Collective and single-particle dynamics in time-resolved two-photon photoemission. Phys. Rev. B 70, 193401 (2004).

    Article  ADS  Google Scholar 

  25. Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997).

    Article  ADS  Google Scholar 

  26. Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017).

    Article  ADS  Google Scholar 

  27. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  ADS  Google Scholar 

  28. Huber, B. et al. Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate. Rev. Sci. Instrum. 90, 113103 (2019).

    Article  ADS  Google Scholar 

  29. Hensen, M. et al. Spatial variations in femtosecond field dynamics within a plasmonic nanoresonator mode. Nano Lett. 19, 4651–4658 (2019).

    Article  ADS  Google Scholar 

  30. Paleček, D., Edlund, P., Gustavsson, E., Westenhoff, S. & Zigmantas, D. Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy. J. Chem. Phys. 151, 024201 (2019).

    Article  ADS  Google Scholar 

  31. Tan, H.-S. Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy. J. Chem. Phys. 129, 124501 (2008).

    Article  ADS  Google Scholar 

  32. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    Article  ADS  Google Scholar 

  33. Pres, S., Kontschak, L., Hensen, M. & Brixner, T. Coherent 2D electronic spectroscopy with complete characterization of excitation pulses during all scanning steps. Opt. Express 29, 4191–4209 (2021).

    Article  ADS  Google Scholar 

  34. Goetz, S., Li, D., Kolb, V., Pflaum, J. & Brixner, T. Coherent two-dimensional fluorescence micro-spectroscopy. Opt. Express 26, 3915–3925 (2018).

    Article  ADS  Google Scholar 

  35. Aeschlimann, M. et al. Transport and dynamics of optically excited electrons in metals. Appl. Phys. A 71, 485–491 (2000).

    Article  ADS  Google Scholar 

  36. Lamprecht, B., Krenn, J. R., Leitner, A. & Aussenegg, F. R. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett. 83, 4421 (1999).

    Article  ADS  Google Scholar 

  37. Lippitz, M., van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

    Article  ADS  Google Scholar 

  38. Cinchetti, M. et al. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 95, 047601 (2005).

    Article  ADS  Google Scholar 

  39. Kubo, A., Pontius, N. & Petek, H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7, 470–475 (2007).

    Article  ADS  Google Scholar 

  40. Podbiel, D. et al. Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields. Nano Lett. 17, 6569–6574 (2017).

    Article  ADS  Google Scholar 

  41. Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021).

    Article  Google Scholar 

  42. Hunsche, S. et al. Ionization and fragmentation of C60 via multiphoton-multiplasmon excitation. Phys. Rev. Lett. 77, 1966–1969 (1996).

    Article  ADS  Google Scholar 

  43. Schlipper, R., Kusche, R., von Issendorff, B. & Haberland, H. Multiple excitation and lifetime of the sodium cluster plasmon resonance. Phys. Rev. Lett. 80, 1194–1197 (1998).

    Article  ADS  Google Scholar 

  44. Bertsch, G. F., Van Giai, N., & Vinh Mau, N. Cluster ionization via two-plasmon excitation. Phys. Rev. A 61, 033202 (2000).

    Article  ADS  Google Scholar 

  45. Reutzel, M., Li, A., Gumhalter, B. & Petek, H. Nonlinear plasmonic photoelectron response of Ag(111). Phys. Rev. Lett. 123, 017404 (2019).

    Article  ADS  Google Scholar 

  46. Li, A. et al. Plasmonic photoemission from single-crystalline silver. ACS Photonics 8, 247–258 (2021).

    Article  Google Scholar 

  47. Krauss, E. et al. Controlled growth of high-aspect-ratio single-crystalline gold platelets. Cryst. Growth Des. 18, 1297–1302 (2018).

    Article  Google Scholar 

  48. Huang, J.-S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010).

    Article  ADS  Google Scholar 

  49. Galler, A. & Feurer, T. Pulse shaper assisted short laser pulse characterization. Appl. Phys. B 90, 427–430 (2008).

    Article  ADS  Google Scholar 

  50. Brasil, C. A., Fanchini, F. F. & de Napolitano, R. J. A simple derivation of the Lindblad equation. Rev. Bras. Ensino Fis. 35, 1303 (2013).

    Google Scholar 

  51. Castaños, L. O. & Zuñiga-Segundo, A. The forced harmonic oscillator: coherent states and the RWA. Am. J. Phys. 87, 815–823 (2019).

    Article  ADS  Google Scholar 

  52. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  ADS  Google Scholar 

  53. Weida, M. J., Ogawa, S., Nagano, H. & Petek, H. Ultrafast interferometric pump–probe correlation measurements in systems with broadened bands or continua. J. Opt. Soc. Am. B 17, 1443–1451 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by the European Research Council (ERC consolidator grant ‘MULTISCOPE’ – 614623) (T.B.) and the Deutsche Forschungsgemeinschaft (423942615 to T.B. and 410519108 to W.P.). We thank P. Malý for fruitful discussions, ELMITEC Elektronenmikroskopie GmbH for technical PEEM support, the Rechenzentrum of the University of Würzburg for providing computational resources and our mechanical and electronics workshop as well as technical staff of the Institut für Physikalische and Theoretische Chemie, Würzburg, for special support in the realization of the experimental set-up.

Author information

Authors and Affiliations

Authors

Contributions

T.B., B. Hecht and M.H. initiated and supervised the experiments. D. Friedrich and E.S. performed the fabrication of the plasmonic nanoslit resonators and the SEM measurements. V.L. adjusted and maintained the NOPA system. D. Fersch, M.H., B. Huber and S.P. planned and executed the 2D nanoscopy experiments. S.P. performed the pulse characterization and reconstruction. M.H., W.P., R.P. and S.P. developed the theoretical model. S.P. implemented and executed the FDTD simulations and the quantum dynamical simulations. S.P. wrote the manuscript with input from all co-authors. All authors contributed to the discussion and have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Bert Hecht, Walter Pfeiffer or Tobias Brixner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Discussions 1–4 containing Supplementary Figs. 1–9 and references.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pres, S., Huber, B., Hensen, M. et al. Detection of a plasmon-polariton quantum wave packet. Nat. Phys. 19, 656–662 (2023). https://doi.org/10.1038/s41567-022-01912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01912-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing