Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laughlin charge pumping in a quantum anomalous Hall insulator

Abstract

Adiabatic charge pumping is one of the most salient features of topological phases of matter1,2,3. Laughlin’s charge pumping in a quantum Hall system is the prototypical example4. In analogy, three-dimensional topological insulators have been predicted to support charge pumping through their magnetically gapped surface states5,6,7,8,9,10. But despite its importance as a direct probe of surface Hall conductivity, charge pumping has not been demonstrated in topological-insulator-based systems. Here we report the observation of charge pumping in a thin-film magnetic heterostructure of topological insulators in a geometry that prohibits edge transport. We find that charge pumping occurs between the inner and outer electrodes in response to alternating magnetic fields when the sample is in the quantum anomalous Hall insulator phase. The amount of pumped charge is accounted for by the surface Hall conductivity of half the quantum conductance for each surface, from a comparison with the axion insulator phase that shows no charge pumping. Because charge pumping is closely related to the theoretically predicted topological magnetoelectric effect5,6,7,8,9,10, our observation may provide clues to its direct observation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adiabatic charge pumping in a Corbino disc sample.
Fig. 2: Observation of charge pumping.
Fig. 3: Frequency dependence of charge pumping.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    Article  Google Scholar 

  3. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    Article  Google Scholar 

  4. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article  ADS  Google Scholar 

  5. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  6. Essin, A. M., Moore, J. E. & Vnderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  Google Scholar 

  7. Essin, A. M., Turner, A. M., Moore, J. E. & Vanderbilt, D. Orbital magnetoelectric coupling in band insulators. Phys. Rev. B 81, 205104 (2010).

    Article  ADS  Google Scholar 

  8. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  9. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  10. Sekine, A. & Nomura, K. Axion electrodynamics in topological materials. J. Appl. Phys. 129, 141101 (2021).

    Article  ADS  Google Scholar 

  11. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  12. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  13. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article  Google Scholar 

  14. Mogi, M. et al. Magnetic modulation dopoing in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  ADS  Google Scholar 

  15. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  16. Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article  ADS  Google Scholar 

  17. Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314 (2017).

    Article  ADS  Google Scholar 

  18. Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).

    Article  ADS  Google Scholar 

  19. Pertsova, A., Canali, C. M. & MacDonald, A. H. Quantum Hall edge states in topological insulator nanoribbons. Phys. Rev. B 94, 121409 (2016).

    Article  ADS  Google Scholar 

  20. Lee, D.-H. Surface states of topological insulators: the Dirac fermion in curved two-dimensional spaces. Phys. Rev. Lett. 103, 196804 (2009).

    Article  ADS  Google Scholar 

  21. Vafek, O. Quantum Hall effect in a singly and doubly connected three-dimensional topological insulator. Phys. Rev. B 84, 245417 (2011).

    Article  ADS  Google Scholar 

  22. König, E. J. et al. Half-integer quantum Hall effect of disordered Dirac fermions at a topological insulator surface. Phys. Rev. B 90, 165435 (2014).

    Article  ADS  Google Scholar 

  23. Dolgopolov, V. T., Shashkin, A. A., Zhitenev, N. B., Dorozhkin, S. I. & vonKlitzing, K. Quantum Hall effect in the absence of edge currents. Phys. Rev. B 46, 12560–12567 (1992).

    Article  ADS  Google Scholar 

  24. Jeanneret, B. et al. Observation of the integer quantum Hall effect by magnetic coupling to a Corbino ring. Phys. Rev. B 51, 9752–9756 (1995).

    Article  ADS  Google Scholar 

  25. Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

    Article  Google Scholar 

  26. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    Article  ADS  Google Scholar 

  27. Lachman, E. O. et al. Observation of superparamagnetism in coexistence with quantum anomalous Hall C = ±1 and C = 0 Chern states. npj Quant. Mater. 2, 70 (2017).

    Article  ADS  Google Scholar 

  28. Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    Article  ADS  Google Scholar 

  29. Fontein, P. F., Lagemaat, J. M., Wolter, J. & André, J. P. Magnetic field modulation—a method for measuring the Hall conductance with a Corbino disc. Semicond. Sci. Technol. 3, 915–918 (1998).

    Article  ADS  Google Scholar 

  30. Morimoto, T., Furusaki, A. & Nagaosa, N. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B 92, 085113 (2015).

    Article  ADS  Google Scholar 

  31. Wang, J., Lian, B., Qi, X.-L. & Zhang, S.-C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

    Article  ADS  Google Scholar 

  32. Okada, K. N. et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 7, 12245 (2016).

    Article  ADS  Google Scholar 

  33. Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Dziom, V. et al. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat. Commun. 8, 15197 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Akimoto and H. Ikegami for experimental support and I. Belopolski for critical reading of the manuscript. This research project was partly supported by JSPS/MEXT Grant-in-Aid for Scientific Research nos. 18H03676 (N.N.), 18H01155 (M. Kawamura) and 22H04958 (M. Kawasaki); JST CREST nos. JPMJCR16F1 (M. Kawasaki), JPMJCR1874 (N.N. and Y.T.), JPMJCR19T3 (T.M.) and JPMJCR20T2 (M. Kawamura); and JST PRESTO no. JPMJPR19L9 (T.M.)

Author information

Authors and Affiliations

Authors

Contributions

Y.T. conceived and supervised the project. M.M. and R.Y. fabricated the samples with the help of A.T., K.S.T. and M. Kawasaki. M. Kawamura and R.Y. performed the measurements and analysed the data. T.M. and N.N. contributed to the theoretical discussions. M. Kawamura, T.M., N.N. and Y.T. wrote the manuscript with inputs from all the other authors.

Corresponding author

Correspondence to Minoru Kawamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Chris Eckberg, Xufeng Kou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5 and Figs. 1–4.

Source data

Source Data Fig. 2

Excel table with experimental data shown in the plots.

Source Data Fig. 3

Excel table with experimental data shown in the plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamura, M., Mogi, M., Yoshimi, R. et al. Laughlin charge pumping in a quantum anomalous Hall insulator. Nat. Phys. 19, 333–337 (2023). https://doi.org/10.1038/s41567-022-01888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01888-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing