Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Floquet engineering of strongly driven excitons in monolayer tungsten disulfide

Abstract

Interactions of quantum materials with strong laser fields can induce exotic non-equilibrium electronic states1,2,3,4,5,6. Monolayer transition metal dichalcogenides, a new class of direct-gap semiconductors with prominent quantum confinement7, offer exceptional opportunities for the Floquet engineering of excitons, which are quasiparticle electron–hole correlated states8. Strong-field driving has the potential to achieve enhanced control of the electronic band structure and thus the possibility of opening a new realm of exciton light–matter interactions. However, a full characterization of strong-field driven exciton dynamics4,9 has been difficult. Here we use mid-infrared laser pulses below the optical bandgap to excite monolayer tungsten disulfide and demonstrate strong-field light dressing of excitons in excess of a hundred millielectronvolts. Our high-sensitivity transient absorption spectroscopy further reveals the formation of a virtual absorption feature below the 1s-exciton resonance, which we assign to a light-dressed sideband from the dark 2p-exciton state. Quantum-mechanical simulations substantiate the experimental results and enable us to retrieve real-space movies of the exciton dynamics. This study advances our understanding of the exciton dynamics in the strong-field regime, showing the possibility of harnessing ultrafast, strong-field phenomena in device applications of two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transient absorption spectra of strongly driven excitons in monolayer WS2.
Fig. 2: Light-dressing mechanisms of strongly driven excitons.
Fig. 3: Optical signatures of the field-driven exciton dynamics.
Fig. 4: Snapshots of the exciton wavepacket.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wagner, M. et al. Observation of the intraexciton autler-townes effect in GaAs/AlGaAs semiconductor quantum wells. Phys. Rev. Lett. 105, 167401 (2010).

    Article  ADS  Google Scholar 

  2. Teich, M. et al. Systematic investigation of terahertz-induced excitonic Rabi splitting. Phys. Rev. B 89, 115311 (2014).

    Article  ADS  Google Scholar 

  3. Uchida, K. et al. Time-resolved observation of coherent excitonic nonlinear response with a table-top narrowband THz pulse wave. Appl. Phys. Lett. 107, 221106 (2015).

    Article  ADS  Google Scholar 

  4. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

    Article  ADS  Google Scholar 

  5. McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

  6. Baykusheva, D. et al. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Lett. 21, 8970–8978 (2021).

  7. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  8. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

  10. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

  11. Sie, E. J. et al. Valley-selective optical stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

  12. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

  13. Yong, C.-K. et al. Biexcitonic optical stark effects in monolayer molybdenum diselenide. Nat. Phys. 14, 1092–1096 (2018).

  14. Cunningham, P. D., Hanbicki, A. T., Reinecke, T. L., McCreary, K. M. & Jonker, B. T. Resonant optical stark effect in monolayer WS2. Nat. Commun. 10, 5539 (2019).

    Article  ADS  Google Scholar 

  15. Yong, C.-K. et al. Valley-dependent exciton fine structure and autler–townes doublets from berry phases in monolayer MoSe2. Nat. Mater. 18, 1065–1070 (2019).

  16. Morrow, D. J. et al. Quantum interference between the optical stark effect and resonant harmonic generation in WS2. Phys. Rev. B 102, 161401 (2020).

    Article  ADS  Google Scholar 

  17. Shi, J. et al. Room temperature terahertz electroabsorption modulation by excitons in monolayer transition metal dichalcogenides. Nano Lett. 20, 5214–5220 (2020).

  18. Earl, S. K. et al. Coherent dynamics of floquet-bloch states in monolayer WS2 reveals fast adiabatic switching. Phys. Rev. B 104, L060303 (2021).

    Article  ADS  Google Scholar 

  19. LaMountain, T. et al. Valley-selective optical stark effect of exciton-polaritons in a monolayer semiconductor. Nat. Commun. 12, 4530 (2021).

    Article  ADS  Google Scholar 

  20. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  21. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  22. Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

  23. Silva, R. E. F., Jiménez-Galán, Á., Amorim, B., Smirnova, O. & Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photon. 13, 849–854 (2019).

  24. Chernikov, A. et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  25. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

  26. Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

    Article  Google Scholar 

  27. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

  28. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

  29. Lindberg, M. & Koch, S. W. Transient oscillations and dynamic stark effect in semiconductors. Phys. Rev. B 38, 7607 (1988).

    Article  ADS  Google Scholar 

  30. Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979 (1965).

    Article  ADS  Google Scholar 

  31. Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 2203 (1973).

    Article  ADS  Google Scholar 

  32. Jauho, A. P. & Johnsen, K. Dynamical Franz-Keldysh effect. Phys. Rev. Lett. 76, 4576 (1996).

    Article  ADS  Google Scholar 

  33. Nordstrom, K. B. et al. Excitonic dynamical Franz-Keldysh effect. Phys. Rev. Lett. 81, 457 (1998).

    Article  ADS  Google Scholar 

  34. Tsuji, N., Oka, T. & Aoki, H. Correlated electron systems periodically driven out of equilibrium: Floquet + DMFT formalism. Phys. Rev. B 78, 235124 (2008).

    Article  ADS  Google Scholar 

  35. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 716–719 (1979).

  36. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    Article  ADS  Google Scholar 

  37. Wu, M., Chen, S., Camp, S., Schafer, K. J. & Gaarde, M. B. Theory of strong-field attosecond transient absorption. J. Phys. B: At. Mol. Opt. Phys. 49, 062003 (2016).

    Article  ADS  Google Scholar 

  38. Chini, M. et al. Sub-cycle oscillations in virtual states brought to light. Sci. Rep. 3, 1105 (2013).

    Article  Google Scholar 

  39. Ott, C. et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

  40. Kruchinin, S. Y., Krausz, F. & Yakovlev, V. S. Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90, 021002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  41. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  Google Scholar 

  42. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

  43. Colbert, D. T. & Miller, W. H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96, 1982 (1992).

    Article  ADS  Google Scholar 

  44. Glutsch, S., Chemla, D. S. & Bechstedt, F. Numerical calculation of the optical absorption in semiconductor quantum structures. Phys. Rev. B 54, 11592 (1996).

    Article  ADS  Google Scholar 

  45. Zhang, T. Y. & Zhao, W. Franz-Keldysh effect and dynamical Franz-Keldysh effect of cylindrical quantum wires. Phys. Rev. B 73, 245337 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Shi and I. Franco for discussions. This work was primarily supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division through the AMOS program. F.L. was supported by the Terman Fellowship and startup funds from the Department of Chemistry at Stanford University. Y.K. acknowledges support from the Urbanek–Chorodow Fellowship at Stanford University and C.H. acknowledges support from the W. M. Keck Foundation and an Alexander von Humboldt Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and C.H. performed the experiments. A.C.J. and F.L. fabricated the sample. Y.K. performed the simulations and analysed the results. F.L., D.A.R., T.F.H. and S.G. supervised the project. V.T. performed supplementary calculations. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Yuki Kobayashi or Shambhu Ghimire.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Discussions.

Source data

Source Data Fig. 1e

Source data for Fig. 1e.

Source Data Fig. 3d

Source data for Fig. 3d.

Source Data Fig. 3e

Source data for Fig. 3e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y., Heide, C., Johnson, A.C. et al. Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys. 19, 171–176 (2023). https://doi.org/10.1038/s41567-022-01849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01849-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing