Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic magnetism in superconducting infinite-layer nickelates

Abstract

The discovery of superconductivity in Nd0.8Sr0.2NiO2 (ref. 1) introduced a new family of layered nickelate superconductors that has now been extended to include a range of strontium doping2,3, praseodymium or lanthanum in place of neodymium4,5,6,7, and the five-layer compound Nd6Ni5O12 (ref. 8). A number of studies have indicated that electron correlations are strong in these materials9,10,11,12,13,14,15, a feature that often leads to the emergence of magnetism. Here we report muon spin rotation/relaxation studies of a series of superconducting infinite-layer nickelates. Regardless of the rare earth ion or doping, we observe an intrinsic magnetic ground state arising from local moments on the nickel sublattice. The coexistence of magnetism—which is likely to be antiferromagnetic and short-range ordered—with superconductivity is reminiscent of some iron pnictides16 and heavy fermion compounds17, and qualitatively distinct from the doped cuprates18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of the low-energy muon spin rotation experiment.
Fig. 2: ZF muon decay asymmetry and fit parameters.
Fig. 3: wTF asymmetry data versus temperature.
Fig. 4: Depth scans of the wTF asymmetry.

Similar content being viewed by others

Data availability

All μSR data are available in the following permanent repositories: https://doi.org/10.16907/493c5efc-c6a8-45a7-a12f-27bfce87bd54 and https://doi.org/10.16907/d36143e7-a9d6-465b-8f6b-9af386bd0a8f. Histograms are also available together with the fitting software, on http://musruser.psi.ch. A run number directory is provided in section B of the Supplementary Information. Source data are provided with this paper.

References

  1. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  ADS  Google Scholar 

  2. Li, D. et al. Superconducting dome in Nd1 − xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Article  ADS  Google Scholar 

  3. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1 − xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article  ADS  Google Scholar 

  4. Osada, M. et al. A superconducting praseodymium nickelate with infinite layer structure. Nano Lett. 20, 5735–5740 (2020).

    Article  ADS  Google Scholar 

  5. Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1 −xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).

    Article  Google Scholar 

  6. Osada, M. et al. Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO2. Adv. Mater. 33, 2104083 (2021).

    Article  Google Scholar 

  7. Zeng, S. et al. Superconductivity in infinite-layer nickelate La1 − xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).

    Article  Google Scholar 

  8. Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article  ADS  Google Scholar 

  9. Botana, A. S. & Norman, M. R. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys. Rev. X 10, 011024 (2020).

    Google Scholar 

  10. Kitatani, M. et al. Nickelate superconductors—a renaissance of the one-band Hubbard model. npj Quantum Mater. 5, 59 (2020).

    Article  ADS  Google Scholar 

  11. Wu, X. et al. Robust dx2 − y2-wave superconductivity of infinite-layer nickelates. Phys. Rev. B 101, 060504 (2020).

    Article  ADS  Google Scholar 

  12. Sakakibara, H. et al. Model construction and a possibility of cupratelike pairing in a new d9 nickelate superconductor (Nd,Sr)NiO2. Phys. Rev. Lett. 125, 077003 (2020).

    Article  ADS  Google Scholar 

  13. Lechermann, F. Late transition metal oxides with infinite-layer structure: nickelates versus cuprates. Phys. Rev. B 101, 081110 (2020).

    Article  ADS  Google Scholar 

  14. Werner, P. & Hoshino, S. Nickelate superconductors: multiorbital nature and spin freezing. Phys. Rev. B 101, 041104 (2020).

    Article  ADS  Google Scholar 

  15. Wan, X., Ivanov, V., Resta, G., Leonov, I. & Savrasov, S. Y. Exchange interactions and sensitivity of the Ni two-hole spin state to Hund’s coupling in doped NdNiO2. Phys. Rev. B 103, 075123 (2021).

    Article  ADS  Google Scholar 

  16. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011).

    Article  ADS  Google Scholar 

  17. Caspary, R. et al. Unusual ground-state properties of UPd2Al3: implications for the coexistence of heavy-fermion superconductivity and local-moment antiferromagnetism. Phys. Rev. Lett. 71, 2146–2149 (1993).

    Article  ADS  Google Scholar 

  18. Tallon, J. L., Bernhard, C. & Niedermayer, C. Muon spin relaxation studies of superconducting cuprates. Supercond. Sci. Technol. 10, A38 (1997).

    Article  ADS  Google Scholar 

  19. Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    Article  ADS  Google Scholar 

  20. Lee, K. W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article  ADS  Google Scholar 

  21. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article  ADS  Google Scholar 

  22. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Article  ADS  Google Scholar 

  23. Goodge, B. H. et al. Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates. Proc. Natl Acad. Sci. USA 118, e2007683118 (2021).

    Article  Google Scholar 

  24. Jiang, M., Berciu, M. & Sawatzky, G. A. Critical nature of the Ni spin state in doped NdNiO2. Phys. Rev. Lett. 124, 207004 (2020).

    Article  ADS  Google Scholar 

  25. Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).

    Article  Google Scholar 

  26. Hayward, M. A. & Rosseinsky, M. J. Synthesis of the infinite layer Ni(I) phase NdNiO2 + x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 5, 839–850 (2003).

    Article  ADS  Google Scholar 

  27. Lin, H. et al. Universal spin-glass behaviour in bulk LaNiO2. New J. Phys. 24, 013022 (2022).

    Article  ADS  Google Scholar 

  28. Ortiz, R. A. et al. Magnetic correlations in infinite-layer nickelates: an experimental and theoretical multi-method study. Phys. Rev. Res 4, 023093 (2022).

    Article  Google Scholar 

  29. Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).

    Article  ADS  Google Scholar 

  30. Kubo, R. & Toyabe, T. in Magnetic Resonance and Relaxation 808–823 (North-Holland, 1967).

  31. Campbell, I. A. et al. Dynamics in canonical spin glasses observed by muon spin depolarization. Phys. Rev. Lett. 72, 1291–1294 (1994).

    Article  ADS  Google Scholar 

  32. Keren, A., Mendels, P., Campbell, I. A. & Lord, J. Probing the spin-spin dynamical autocorrelation function in a spin glass above Tg via muon spin relaxation. Phys. Rev. Lett. 77, 1386–1389 (1996).

    Article  ADS  Google Scholar 

  33. Stilp, E. et al. Magnetic phase diagram of low-doped La2 − xSrxCuO4 thin films studied by low-energy muon-spin rotation. Phys. Rev. B 88, 064419 (2013).

    Article  ADS  Google Scholar 

  34. Bourges, P., Casalta, H., Ivanov, A. S. & Petitgrand, D. Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates. Phys. Rev. Lett. 79, 4906–4909 (1997).

    Article  ADS  Google Scholar 

  35. Lin, J. Q. et al. Strong superexchange in a d9 − δ nickelate revealed by resonant inelastic X-ray scattering. Phys. Rev. Lett. 126, 087001 (2021).

    Article  ADS  Google Scholar 

  36. Lee, K. et al. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).

    Article  ADS  Google Scholar 

  37. Prokscha, T. et al. The new μE4 beam at PSI: a hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods Phys. Res. A 595, 317–331 (2008).

    Article  Google Scholar 

  38. Saadaoui, H. et al. Zero-field spin depolarization of low-energy muons in ferromagnetic nickel and silver metal. Phys. Proc. 30, 164–167 (2012).

    Article  ADS  Google Scholar 

  39. Suter, A. & Wojek, B. M. Musrfit: a free platform-independent framework for μsR data analysis. Phys. Proc. 30, 69–73 (2012).

    Article  ADS  Google Scholar 

  40. Salman, Z. et al. Direct spectroscopic observation of a shallow hydrogenlike donor state in insulating SrTiO3. Phys. Rev. Lett. 113, 156801 (2014).

    Article  ADS  Google Scholar 

  41. Simões, A. F. et al. Muon implantation experiments in films: obtaining depth-resolved information. Rev. Sci. Instrum. 91, 023906 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at Stanford/SLAC was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract no. DE-AC02-76SF00515, and Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems Initiative through grant no. GBMF9072 (synthesis equipment). J.F. was also supported by the Swiss National Science Foundation through Postdoc.Mobility P400P2199297. J.F., M.H. and J.-M.T. acknowledge support from the Swiss National Science Foundation through Division II 200020_179155 and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 319286 (Q-MAC). D.L. acknowledges support from Hong Kong Research Grant Council (CityU 21301221) and National Natural Science Foundation of China (12174325). Part of this work is based on experiments performed at the Swiss Muon Source SμS, Paul Scherrer Institute, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and D.L. prepared and characterised the samples with support from M.O., B.Y.W., K.L. and Y.L. J.F., M.H. and A.S. carried out the μSR measurements with support from Z.S. and T.P. J.F. and A.S. analysed the data. M.M.M. provided the model for the energy-dependent data. J.F., M.H., J.-M.T., H.Y.H. and A.S. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Jennifer Fowlie, Harold Y. Hwang or Andreas Suter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Peter Baker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods, Figs. 1–6, Tables I–VI and Discussion.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Supplementary Fig. 1

Source Data Supplementary Fig. 1

Source Data Supplementary Fig. 2

Statistical source data for Supplementary Fig. 2

Source Data Supplementary Fig. 3

Statistical source data for Supplementary Fig. 3

Source Data Supplementary Fig. 4

Statistical source data for Supplementary Fig. 4

Source Data Supplementary Fig. 5

Statistical source data for Supplementary Fig. 5

Source Data Supplementary Fig. 6

Statistical source data for Supplementary Fig. 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowlie, J., Hadjimichael, M., Martins, M.M. et al. Intrinsic magnetism in superconducting infinite-layer nickelates. Nat. Phys. 18, 1043–1047 (2022). https://doi.org/10.1038/s41567-022-01684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01684-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing