Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing

Abstract

Optical multiplexing1,2,3,4,5,6,7,8,9,10,11 by creating orthogonal data channels has offered an unparalleled approach for information encoding with substantially improved density and security. Despite the fact that the orbital angular momentum (OAM) of light involves physical orthogonal division, the lack of explicit OAM sensitivity at the nanoscale prevents this feature from realizing nanophotonic information encoding. Here we demonstrate the viability of nanoscale information multiplexing utilizing the OAM of light. This is achieved by discovering OAM-dependent polarization ellipses in non-paraxial focusing conditions and hence synthetic helical dichroism resulting from the distinct absorption of achiral nanoparticles to the different order of OAM beams. Leveraging this mechanism, the application of subwavelength-scale focused OAM beams to self-assemble plasmonic nanoaggregates further enables six-dimensional optical information multiplexing, in conjunction with wavelength, polarization and three spatial dimensions. Our results suggest the possibility of multiplexing OAM division as an unbounded degree of freedom for nanophotonic information encoding, security imprinting and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OAM-dependent polarization ellipse-mediated synthetic HD for six-dimensional optical encoding.
Fig. 2: Amplified synthetic HD in disordered plasmonic nanoaggregates.
Fig. 3: Optical encoding through the photothermal deformation mechanism.
Fig. 4: Six-dimensional optical encryption and encoding.

Similar content being viewed by others

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999).

    Article  ADS  Google Scholar 

  2. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photon. 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  3. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    Article  ADS  Google Scholar 

  4. Li, X., Lan, T. H., Tien, C. H. & Gu, M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 998 (2012).

    Article  ADS  Google Scholar 

  5. Xian, M. et al. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci. Bull. 65, 2072–2079 (2020).

    Article  Google Scholar 

  6. Karl, N. J., Mckinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

    Article  ADS  Google Scholar 

  7. Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

    Article  ADS  Google Scholar 

  8. Yun, H., Lee, S. Y., Hong, K., Yeom, J. & Lee, B. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat. Commun. 6, 7133 (2015).

    Article  ADS  Google Scholar 

  9. Dai, Q. et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv. Mater. 29, 1701918 (2017).

    Article  Google Scholar 

  10. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).

    Article  ADS  Google Scholar 

  11. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotech. 13, 941–946 (2018).

    Article  ADS  Google Scholar 

  12. Tan, S. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photon. 11, 806–812 (2017).

    Article  Google Scholar 

  13. Darwin, C. G. Notes on the theory of radiation. Proc. R. Soc. Lond. A 136, 36–52 (1932).

    Article  ADS  Google Scholar 

  14. Bazhenov, V. Y., Vasnetsov, M. V. & Soskin, M. S. Laser beams with screw dislocations in their wavefonts. JETP Lett. 52, 429–431 (1990).

    Google Scholar 

  15. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  16. He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    Article  ADS  Google Scholar 

  17. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  18. Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 10, 327–332 (2016).

    Article  ADS  Google Scholar 

  19. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article  ADS  Google Scholar 

  20. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  ADS  Google Scholar 

  21. Yan, Y. et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 5, 4876 (2014).

    Article  ADS  Google Scholar 

  22. Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photon. 14, 102–108 (2020).

    Article  ADS  Google Scholar 

  23. Alicia, Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    Article  Google Scholar 

  24. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  25. Wong, G. K. L. et al. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337, 446–449 (2012).

    Article  ADS  Google Scholar 

  26. Maguid, E. et al. Disorder-induced optical transition from spin Hall to random Rashba effect. Science 358, 1411–1415 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  27. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  ADS  Google Scholar 

  28. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  29. Ren, H., Li, X., Zhang, Q. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

    Article  ADS  Google Scholar 

  30. Wang, S. et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photon. J. 10, 1–9 (2018).

    Google Scholar 

  31. Gouy, L. G. Sur une propriété nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris 110, 1251–1253 (1890).

    Google Scholar 

  32. Visser, T. D. & Wolf, E. The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields. Opt. Commun. 283, 3371–3375 (2010).

    Article  ADS  Google Scholar 

  33. Brullot, W., Vanbel, M. K., Swusten, T. & Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016).

    Article  ADS  Google Scholar 

  34. Kerber, R. M., Fitzgerald, J. M. & Oh, S. S. Orbital angular momentum dichroism in nanoantennas. Commun. Phys. 1, 87 (2018).

    Article  Google Scholar 

  35. Li, J. X. et al. Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling. Laser Photonics Rev. 10, 826–834 (2016).

    Article  ADS  Google Scholar 

  36. Yuan, L., Lin, Q., Xiao, M. & Fan, S. Synnthetic dimension in photonics. Optica 5, 1396–1405 (2018).

    Article  ADS  Google Scholar 

  37. Gu, M. Advanced Optical Imaging Theory (Springer, 2000).

  38. Evlyukhin, A. B., Fischer, T., Reinhardt, C. & Chichkov, B. N. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B 94, 205434 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.L. would like to thank the National Key R&D Program of China (2018YFB1107200). X.L. also acknowledges financial support from the National Nature and Science Foundation of China (grant no. 61522504) and the Guangdong Provincial Innovation and Entrepreneurship Project (grant no. 2016ZT06D081). Y.X. acknowledges financial support from the National Nature and Science Foundation of China (grant no. 91750110), the Guangdong Provincial Innovation and Entrepreneurship Project (2019ZT08X340), the Research and Development Plan in Key Areas of Guangdong Province (2018B010114002) and the Pearl River Nova Program of Guangzhou (no. 201806010040). C.-W.Q. acknowledges support from the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme (CRP award NRF CRP22-2019-0006). C.-W.Q. is also supported by grant no. R-261-518-004-720 from Advanced Research and Technology Innovation Centre (ARTIC). M.G. acknowledges support from the Zhangjiang National Innovation Demonstration Zone (ZJ2019-ZD-005).

Author information

Authors and Affiliations

Authors

Contributions

Y. X., X.L. and M.G. conceived the idea. Y.X. and X.O. performed the theoretical study. X.O. conducted the experiments with the help of M.X., Z.F, L.Z, Y.C. and X.L. Y.X. and X.L. analysed the data. Y.X. and X.L. wrote the manuscript with input from all the authors. X.L. and M.G. supervised this project.

Corresponding authors

Correspondence to Min Gu or Xiangping Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Ebrahim Karimi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, X., Xu, Y., Xian, M. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photon. 15, 901–907 (2021). https://doi.org/10.1038/s41566-021-00880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00880-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing