Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct patterning of colloidal quantum dots with adaptable dual-ligand surface

Subjects

An Author Correction to this article was published on 10 March 2023

This article has been updated

Abstract

Colloidal quantum dots (QDs) stand at the forefront of a variety of photonic applications given their narrow spectral bandwidth and near-unity luminescence efficiency. However, integrating luminescent QD films into photonic devices without compromising their optical or transport characteristics remains challenging. Here we devise a dual-ligand passivation system comprising photocrosslinkable ligands and dispersing ligands to enable QDs to be universally compatible with solution-based patterning techniques. The successful control over the structure of both ligands allows the direct patterning of dual-ligand QDs on various substrates using commercialized photolithography (i-line) or inkjet printing systems at a resolution up to 15,000 pixels per inch without compromising the optical properties of the QDs or the optoelectronic performance of the device. We demonstrate the capabilities of our approach for QD-LED applications. Our approach offers a versatile way of creating various structures of luminescent QDs in a cost-effective and non-destructive manner, and could be implemented in nearly all commercial photonics applications where QDs are used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of direct patterning with dual-ligand QDs.
Fig. 2: Structurally engineered PXLs for non-destructive QD photocrosslink.
Fig. 3: Multicoloured patterns made of dual-ligand QDs.
Fig. 4: Optoelectronic devices implementing photocrosslinked QD patterns.

Similar content being viewed by others

Data availability

All data supporting this work are contained in Figs. 1–4. Source data are provided with this paper.

Change history

References

  1. Ekimov, A. I., Efros, Al. L. & Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985).

    Article  CAS  Google Scholar 

  2. Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).

    Article  CAS  Google Scholar 

  3. Colvin, V., Schlamp, M. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  Google Scholar 

  4. Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005).

    Article  CAS  Google Scholar 

  5. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  Google Scholar 

  6. Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    Article  CAS  Google Scholar 

  7. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  Google Scholar 

  8. Steckel, J. S. et al. Quantum dots: the ultimate down‐conversion material for LCD displays. J. Soc. Inf. Disp. 23, 294–305 (2015).

    Article  CAS  Google Scholar 

  9. Bourzac, K. Quantum dots go on display. Nature 493, 283–283 (2013).

    Article  CAS  Google Scholar 

  10. Yang, J. et al. Toward full-color electroluminescent quantum dot displays. Nano Lett. 21, 26–33 (2021).

    Article  CAS  Google Scholar 

  11. Yang, J. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat. Commun. 11, 2874 (2020).

    Article  CAS  Google Scholar 

  12. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article  CAS  Google Scholar 

  13. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  14. Zhao, J. et al. Large-area patterning of full-color quantum dot arrays beyond 1,000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 12, 4603 (2021).

    Article  CAS  Google Scholar 

  15. Triana, M. A., Hsiang, E.-L., Zhang, C., Dong, Y. & Wu, S.-T. Luminescent nanomaterials for energy-efficient display and healthcare. ACS Energy Lett. 7, 1001–1020 (2022).

    Article  CAS  Google Scholar 

  16. Cakmakci, O. & Rolland, J. Head-worn displays: a review. J. Disp. Technol. 2, 199–216 (2006).

    Article  Google Scholar 

  17. Jang, H. J., Lee, J. Y., Baek, G. W., Kwak, J. & Park, J.-H. Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. J. Inf. Disp. 23, 1–17 (2022).

    Article  Google Scholar 

  18. Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11, 3040 (2020).

    Article  CAS  Google Scholar 

  19. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  CAS  Google Scholar 

  20. Keum, H. et al. Photoresist contact patterning of quantum dot films. ACS Nano 12, 10024–10031 (2018).

    Article  CAS  Google Scholar 

  21. Hahm, D. et al. Surface engineered colloidal quantum dots for complete green process. ACS Appl. Mater. Interfaces 12, 10563–10570 (2020).

    Article  CAS  Google Scholar 

  22. Azzellino, G., Freyria, F. S., Nasilowski, M., Bawendi, M. G. & Bulović, V. Micron-scale patterning of high quantum yield quantum dot leds. Adv. Mater. Technol. 4, 1800727 (2019).

    Article  CAS  Google Scholar 

  23. Wood, V. et al. Inkjet‐printed quantum dot–polymer composites for full‐color a.c.‐driven displays. Adv. Mater. 21, 2151–2155 (2009).

    Article  CAS  Google Scholar 

  24. Yang, P., Zhang, L., Kang, D. J., Strahl, R. & Kraus, T. High‐resolution inkjet printing of quantum dot light‐emitting microdiode arrays. Adv. Optical Mater. 8, 1901429 (2020).

    Article  CAS  Google Scholar 

  25. Roh, H. et al. Enhanced performance of pixelated quantum dot light‐emitting diodes by inkjet printing of quantum dot–polymer composites. Adv. Optical Mater. 9, 2002129 (2021).

    Article  CAS  Google Scholar 

  26. Chen, M. et al. High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Res. 14, 4125–4131 (2021).

    Article  CAS  Google Scholar 

  27. Tekin, E., Smith, P. J. & Schubert, U. S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4, 703–713 (2008).

    Article  CAS  Google Scholar 

  28. Ahn, J. et al. Ink-lithography for property engineering and patterning of nanocrystal thin films. ACS Nano 15, 15667–15675 (2021).

    Article  CAS  Google Scholar 

  29. Kim, G.-H. et al. High-resolution colloidal quantum dot film photolithography via atomic layer deposition of ZnO. ACS Appl. Mater. Interfaces 13, 43075–43084 (2021).

    Article  CAS  Google Scholar 

  30. Mei, W. et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 13, 2485–2491 (2020).

    Article  CAS  Google Scholar 

  31. Park, J.-S. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16, 6946–6953 (2016).

    Article  CAS  Google Scholar 

  32. Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017).

    Article  CAS  Google Scholar 

  33. Wang, Y., Pan, J.-A., Wu, H. & Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 13, 13917–13931 (2019).

    Article  CAS  Google Scholar 

  34. Cho, H. et al. Direct optical patterning of quantum dot light‐emitting diodes via in situ ligand exchange. Adv. Mater. 32, 2003805 (2020).

  35. Ahn, S., Chen, W. & Vazquez-Mena, O. High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity via photolithography with a top graphene layer to protect surface ligands. Nanoscale Adv. 3, 6206–6212 (2021).

    Article  CAS  Google Scholar 

  36. Pan, J.-A., Ondry, J. C. & Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett. 21, 7609–7616 (2021).

    Article  CAS  Google Scholar 

  37. Mattoussi, H. et al. Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    Article  CAS  Google Scholar 

  38. Jeong, B. G. et al. Colorful opaque photovoltaic modules with down-converting InP/ZnSexS1–x quantum dot layers. Nano Energy 77, 105169 (2020).

    Article  CAS  Google Scholar 

  39. Sanai, Y., Kagami, S. & Kubota, K. Cross-linking photopolymerization of monoacrylate initiated by benzophenone. J. Polym. Sci. Part A: Polym. Chem. 56, 1545–1553 (2018).

    Article  CAS  Google Scholar 

  40. Virkar, A., Ling, M.-M., Locklin, J. & Bao, Z. Oligothiophene based organic semiconductors with cross-linkable benzophenone moieties. Synth. Met. 158, 958–963 (2008).

    Article  CAS  Google Scholar 

  41. Qu, B., Xu, Y., Ding, L. & Rånby, B. A new mechanism of benzophenone photoreduction in photoinitiated crosslinking of polyethylene and its model compounds. J. Polym. Sci. Part A: Polym. Chem. 38, 999–1005 (2000).

    Article  CAS  Google Scholar 

  42. Boscá, F. & Miranda, M. A. New trends in photobiology (invited review) photosensitizing drugs containing the benzophenone chromophore. J. Photochem. Photobiol. B 43, 1–26 (1998).

    Article  Google Scholar 

  43. Dorman, G., Nakamura, H., Pulsipher, A. & Prestwich, G. D. The life of pi star: exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 116, 15284–15398 (2016).

    Article  CAS  Google Scholar 

  44. Ko, J. et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS Appl. Mater. Interfaces 12, 42153–42160 (2020).

    Article  Google Scholar 

  45. Han, J. et al. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. J. Soc. Inf. Disp. 24, 545–551 (2016).

    Article  CAS  Google Scholar 

  46. Kim, B. H. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).

    Article  CAS  Google Scholar 

  47. Nallan, H. C., Sadie, J. A., Kitsomboonloha, R., Volkman, S. K. & Subramanian, V. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. Langmuir 30, 13470–13477 (2014).

    Article  CAS  Google Scholar 

  48. Chung, S., Cho, K. & Lee, T. Recent progress in inkjet‐printed thin‐film transistors. Adv. Sci. 6, 1801445 (2019).

    Article  Google Scholar 

  49. Hahm, D. et al. Design principle for bright, robust, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 31, 3476–3484 (2019).

    Article  CAS  Google Scholar 

  50. Jeong, B. G. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 21, 246–252 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT, and Future Planning (2020R1A2C2011478 (W.K.B.), 2021R1A2C2008332 (M.S.K.), 2020M3D1A2101310 & 2021M3H4A3A01062960 (W.K.B., M.S.K. and D.C.L.), and 2021M3H4A1A01004332 (D.C.L. and W.K.B.)); the Ministry of Trade, Industry & Energy (MOTIE, Korea) (no. 20010737 (W.K.B.) and 20015805 (J.-W.S., N.S.C. and C.K.)); and Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (no. 22ZB1200 (J.-W.S., N.S.C. and C.K.), Development of ICT Materials, Components and Equipment Technologies). This research was also supported by Samsung Display (W.K.B., M.S.K. and D.C.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.H., J.L., H.K., C.K., M.S.K. and W.K.B. conceived the original idea and designed the experiments. D.H., J.L., J.H.C., Y.-S.P. and D.C.L. conducted the synthesis and characterization of QD and analysed the spectroscopic data. D.H., J.L., H.K., J.-W.S., J.Y., C.H.L. and C.K. prepared the dual-ligand QDs and carried out the patterning experiment and thin-film characterization. S.H. and S.C. conducted the inkjet printing and characterization. B.C. and E.H. carried out the computational calculation. J.-W.S., S.R., H.J., N.S.C. and C.K. fabricated all the devices and analysed the data. All the authors contributed to the preparation of the paper.

Corresponding authors

Correspondence to Chan-mo Kang, Moon Sung Kang or Wan Ki Bae.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Lei Qian, Manuel Triana and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–24, Tables 1 and 2, caption for Supplementary Video 1 and references.

Supplementary Video 1

Electroluminescence of 10×10 RGB QD-LED arrays implementing photocrosslinked QD patterns. Real-time movie of light emission from 10 × 10 QD-LED arrays for each primary colour and RGB QD-LED array.

Source data

Source Data Fig. 1

Image source data for Fig. 1d.

Source Data Fig. 2

Numerical and image source data for Fig. 2b–f.

Source Data Fig. 3

Numerical and image source data for Fig. 3a–e,h.

Source Data Fig. 4

Numerical source data for Fig. 4a,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahm, D., Lim, J., Kim, H. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 17, 952–958 (2022). https://doi.org/10.1038/s41565-022-01182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01182-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing