Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire

Abstract

The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1,2,3,4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5,6,7,8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9,10,11,12,13,14,15,16,17,18,19,20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane–WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge–WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth and characterization of single-crystal WS2 monolayer on vicinal a-plane sapphire.
Fig. 2: High-quality WS2 monolayer grown on vicinal a-plane sapphire.
Fig. 3: Characterization of WS2 islands on vicinal a-plane sapphire.
Fig. 4: Dual-coupling-guided epitaxial growth of WS2 monolayer on vicinal a-plane sapphire.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the findings of this study are available within the paper and Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  2. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  3. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  4. Jin, C. H. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360, 893–896 (2018).

    Article  CAS  Google Scholar 

  5. Xu, X. Z. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    Article  CAS  Google Scholar 

  6. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  CAS  Google Scholar 

  7. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  CAS  Google Scholar 

  8. Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article  CAS  Google Scholar 

  9. Chen, L. et al. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9, 8368–8375 (2015).

    Article  CAS  Google Scholar 

  10. Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Article  CAS  Google Scholar 

  11. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  12. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  13. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article  Google Scholar 

  14. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  Google Scholar 

  15. Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    Article  CAS  Google Scholar 

  16. Gao, Y. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015).

    Article  CAS  Google Scholar 

  17. Zhou, J. D. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  Google Scholar 

  18. Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 14, 5036–5045 (2020).

    Article  CAS  Google Scholar 

  19. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  Google Scholar 

  20. Wang, Q. Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article  CAS  Google Scholar 

  21. Sang, X. H. et al. In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 9, 2051 (2018).

    Article  Google Scholar 

  22. Kurita, T., Uchida, K. & Oshiyama, A. Atomic and electronic structures of α-Al2O3 surfaces. Phys. Rev. B 82, 155319 (2010).

    Article  Google Scholar 

  23. Dong, J. C., Zhang, L. N., Dai, X. Y. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    Article  CAS  Google Scholar 

  24. Ismach, A., Segev, L., Wachtel, E. & Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 43, 6140–6143 (2004).

    Article  CAS  Google Scholar 

  25. Cheng, J. X. et al. Chiral selection rules for multi-photon processes in two-dimensional honeycomb materials. Opt. Lett. 44, 2141–2144 (2019).

    Article  CAS  Google Scholar 

  26. Hong, J. H. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  CAS  Google Scholar 

  27. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article  Google Scholar 

  28. Wang, G. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 119, 047401 (2017).

    Article  CAS  Google Scholar 

  29. Zeng, H. L. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  30. Zhu, B. R. et al. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl Acad. Sci. USA 111, 11606–11611 (2014).

    Article  CAS  Google Scholar 

  31. Scrace, T. et al. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nat. Nanotechnol. 10, 603–607 (2015).

    Article  CAS  Google Scholar 

  32. Plechinger, G. et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat. Commun. 7, 12715 (2016).

    Article  CAS  Google Scholar 

  33. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  37. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  38. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52025023 (K.L.), 51991342 (K.L.), 52021006 (K.L.), 11888101 (E.W.) and 52102043 (X.X.)); the Key R&D Program of Guangdong Province (2020B010189001 (X.X.), 2019B010931001 (K.L.) and 2018B030327001 (D.Y.)); Science and Technology Program of Guangzhou (2019050001 (X.X.)); the Pearl River Talent Recruitment Program of Guangdong Province (2019ZT08C321 (X.X.)); Beijing Natural Science Foundation (JQ19004 (K.L.)); Guangdong Provincial Science Fund for Distinguished Young Scholars (2020B1515020043 (X.X.)); National Key R&D Program of China (2016YFA0300903 (K.L.), 2016YFA0300804 (P.G.) and 2019YFA0307800 (L.L.)); Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06D348 (D.Y.)); the Science, Technology and Innovation Commission of Shenzhen Municipality (KYTDPT20181011104202253 (D.Y.)); the Strategic Priority Research Program of Chinese Academy of Sciences (XDB33000000 (K.L.)); National Postdoctoral Program for Innovative Talents (BX20190016 (C.L.)); China Postdoctoral Science Foundation (2019M660280 (C.L.), 2019M660281 (R.Q.) and 2020T130022 (R.Q.)); and the Institute for Basic Science (IBS-R019-D1 (F.D.)), South Korea. The authors also acknowledge the use of the IBS-CMCM high-performance computing system simulator.

Author information

Authors and Affiliations

Authors

Contributions

K.L. conceived and supervised the project. J.W., X.X., Z.L., P.Z., G.C., C.C., C.L., Y. Zuo, G.X., M.W. and E.W. performed the sample growth. T.C. and F.D. performed the theoretical calculations. L.G., H.H., C.H., J. Liang, Z.T. and S.W. conducted the optical measurements. R.Q., Y.G., D.Y. and P.G. conducted the TEM measurements. D.D., J.T., Z.Y., L.L., R.Y., G.Z. and J. Lu conducted the electrical measurements. Zhibin Zhang, Zhihong Zhang, S.Z., J.Q., Y. Zhao, Q.J. and Q.L. conducted the AFM measurements. X.X. and X.F. conducted the LEED measurements. All the authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Yun Zhao, Shiwei Wu, Feng Ding or Kaihui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Xiangfeng Duan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, X., Cheng, T. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022). https://doi.org/10.1038/s41565-021-01004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01004-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing