Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii

Abstract

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The LPS and LOS transport pathway and inhibitors of MsbA.
Fig. 2: Cerastecin target identification.
Fig. 3: Cryo-EM structure reveals cerastecin C binding to A. baumannii MsbA at the dimer interface in a symmetric fashion and provides mechanistic rationale for a distinct mechanism of action.
Fig. 4: Efficacy of cerastecin D in two neutropenic murine models of A. baumannii infection.

Similar content being viewed by others

Data availability

All data supporting the findings of this study, including statistical analyses, are available within the article and its Supplementary Information or Source Data files. The cryo-EM structure and supporting data have been deposited to the PDB under the accession code 8GK7. Source data are provided with this paper.

Code availability

No proprietary code was used in this work.

References

  1. Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  2. Ma, C. & McClean, S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle it. Vaccines https://doi.org/10.3390/vaccines9060570 (2021).

  3. Oldenkamp, R., Schultsz, C., Mancini, E. & Cappuccio, A. Filling the gaps in the global prevalence map of clinical antimicrobial resistance. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2013515118 (2021).

  4. Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264, 382–388 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Zgurskaya, H. I. & Rybenkov, V. V. Permeability barriers of Gram-negative pathogens. Ann. N. Y. Acad. Sci. 1459, 5–18 (2020).

    Article  PubMed  Google Scholar 

  6. Walker, S. S. & Black, T. A. Are outer-membrane targets the solution for MDR Gram-negative bacteria? Drug Discov. Today 26, 2152–2158 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Doerrler, W. T., Gibbons, H. S. & Raetz, C. R. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J. Biol. Chem. 279, 45102–45109 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, D. et al. Energetics of lipid transport by the ABC transporter MsbA is lipid dependent. Commun. Biol. 4, 1379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C. & Raetz, C. R. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273, 12466–12475 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, G. et al. Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc. Natl Acad. Sci. USA 115, 6834–6839 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ho, H. et al. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557, 196–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Verma, V. A. et al. Discovery of inhibitors of the lipopolysaccharide transporter MsbA: from a screening hit to potent wild-type gram-negative activity. J. Med. Chem. 65, 4085–4120 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, G., Meredith, T. C. & Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 16, 779–785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boll, J. M. et al. A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proc. Natl Acad. Sci. USA. 113, E6228–E6237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Berardinis, V. et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol. Syst. Biol. 4, 174 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng, D., Hong, W., Choudhury, B. P., Carlson, R. W. & Gu, X. X. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect. Immun. 73, 7569–7577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richie, D. L. et al. Toxic accumulation of LPS pathway intermediates underlies the requirement of LpxH for growth of Acinetobacter baumannii ATCC 19606. PLoS ONE 11, e0160918 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Steeghs, L. et al. Meningitis bacterium is viable without endotoxin. Nature 392, 449–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Wei, J. R. et al. LpxK is essential for growth of Acinetobacter baumannii ATCC 19606: relationship to toxic accumulation of lipid A pathway intermediates. mSphere https://doi.org/10.1128/mSphere.00199-17 (2017).

  22. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Beceiro, A. et al. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother. 58, 518–526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Quintanilla, M. et al. Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii. Int. J. Antimicrob. Agents 46, 696–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Barb, A. W. et al. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry 46, 3793–3802 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Bonifer, C. & Glaubitz, C. MsbA: an ABC transporter paradigm. Biochem. Soc. Trans. 49, 2917–2927 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Konovalova, A., Kahne, D. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539–556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gross, S. et al. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 12, 11882–11893 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wuisan, Z. G., Kresna, I. D. M., Bohringer, N., Lewis, K. & Schaberle, T. F. Optimization of heterologous darobactin A expression and identification of the minimal biosynthetic gene cluster. Metab. Eng. 66, 123–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Cohen, F. et al. Optimization of LpxC inhibitors for antibacterial activity and cardiovascular safety. ChemMedChem 14, 1560–1572 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Fujita, K. et al. Pharmacodynamic target assessment and prediction of clinically effective dosing regimen of TP0586532, a novel non-hydroxamate LpxC inhibitor, using a murine lung infection model. J. Infect. Chemother. 28, 635–642 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Piizzi, G. et al. Design, synthesis, and properties of a potent inhibitor of Pseudomonas aeruginosa deacetylase LpxC. J. Med. Chem. 60, 5002–5014 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Robinson, J. A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in gram-negative bacteria. Front. Chem. 7, 45 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thélot, F. A. et al. Distinct allosteric mechanisms of first-generation MsbA inhibitors. Science 374, 580–585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carretero-Ledesma, M. et al. Phenotypic changes associated with colistin resistance due to lipopolysaccharide loss in Acinetobacter baumannii. Virulence 9, 930–942 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coenye, T. & Vandamme, P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol. Lett. 228, 45–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Karakonstantis, S. A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. J. Chemother. 33, 1–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Novovic, K. & Jovcic, B. Colistin resistance in Acinetobacter baumannii: molecular mechanisms and epidemiology. Antibiotics https://doi.org/10.3390/antibiotics12030516 (2023).

  41. Shields, R. K., Paterson, D. L. & Tamma, P. D. Navigating available treatment options for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections. Clin. Infect. Dis. 76, S179–S193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lai, M. T. et al. Doravirine and islatravir have complementary resistance profiles and create a combination with a high barrier to resistance. Antimicrob. Agents Chemother. 66, e0222321 (2022).

    Article  PubMed  Google Scholar 

  44. Tripathi, P. K. et al. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int. J. Biol. Macromol. 164, 2622–2631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stein, N. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641–643 (2008).

    Article  CAS  Google Scholar 

  47. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  51. Drusano, G. L., Liu, W., Kulawy, R. & Louie, A. Impact of granulocytes on the antimicrobial effect of tedizolid in a mouse thigh infection model. Antimicrob. Agents Chemother. 55, 5300–5305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zuluaga, A. F. et al. Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect. Dis. 6, 55 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Powers, M. J. & Trent, M. S. Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin. Mol. Microbiol. 107, 47–56 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Libardo and S. Dong for their careful review of the paper and helpful suggestions, as well as K. Smith, S. Zhou and I. Etim for their help with the plasma protein binding determinations. We thank the scientists at Evotec for their contributions to protein production and the scientists at HD Biosciences for testing the expanded strain panel including the CRAB isolates.

Author information

Authors and Affiliations

Authors

Contributions

S.S.W., C.J.B., P.S., H.W., J.S., I.R., R.T., T.A.B., A.I., Y.-T.C., D.J.K. and M.B. designed the experiments and wrote the paper. H.W. and R.E.P. designed and conducted microbial target identification and biological experiments. K.B., Z.W., J.S., A.W.S., C.W., L.T., M.L., H.J.M., D.S., J.M., T.M., W.L., J.M., A.C., A.B., L.-K.Z., M.X. and J.L. designed, constructed or analysed chemical matter. R.T., R.R.M., A.L. and T.D.C. designed and conducted formulation and pharmacokinetics studies, and analysed data. P.S., D.M. and H.L. designed, conducted and analysed in vivo efficacy studies. A.I., Y.-T.C., D.J.K. and G.S. designed and conducted cryo-EM structure experiments. C.B.-T., L.D. and M.B. designed and conducted biochemical experiments. Y.L., J.C.X., Q.S., P.A.M. and R.E.P. conducted antimicrobial and cell-based assays.

Corresponding author

Correspondence to Scott S. Walker.

Ethics declarations

Competing interests

All authors are or were, at the time this work was conducted, employees of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA and may be shareholders in Merck & Co., Inc., Rahway, NJ, USA. Cerastecin A–D are the subjects of two patent applications (PCT/US2023/022198 and PCT/US2023/022200) by Merck Sharp & Dohme LLC, Rahway, NJ, USA. I.R., C.J.B., J.S., M.L., H.J.M., L.T., H.W., C.W., A.B., L.-K.Z., J.L., K.B., Z.W., A.W.S. and A.C. are inventors on either or both applications.

Peer review

Peer review information

Nature Microbiology thanks Russell Bishop, Ian Seiple, Hendrik van Veen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bactericidal activity of cerastecin B.

The time-dependent effects of cerastecin B exposure at 8 X MIC on A. baumannii ATCC19606 and CLB 21655 cell viability. Results from independent single experiments using two A. baumannii strains, ATCC19606 and CLB21655 are shown.

Source data

Extended Data Fig. 2 Chemical genetic confirmation of cerastecin mechanism of action.

a, Sensitivity of wild-type (upper panel), cerastecin B-resistant (B5, middle panel), and lpxA deleted (lower panel) A. baumannii ATCC19606 to the indicated compounds. Dilutions of compounds from high (top) to low (bottom), indicated by black wedge, were placed directly on the agar surface. Col, colistin; Rif, rifampicin; Bac, bacitracin. Photographs are unprocessed and uncropped. b, Detection of LOS in wild-type and cerastecin B-resistant mutant B5 A. baumannii ATCC19606 by the HEK-Blue™ cell assay. Test done in duplicate, both data sets shown. c, RT-qPCR to measure relative expression of MsbA in wild-type, mutant B1 (V39F) and B3 (K6K) A. baumannii ATCC19606 (n = 4). Data plotted with mean +/- SEM. Statistical significance relative to the wild-type strain is denoted as * (p = 0.003) and *** (p = 0.00038) was analyzed in MS Excel (v. 2302) using a two-tailed Student t-test. d, Sensitivity of wild-type (upper panel), cerastecin B-resistant mutants B1 (V39F) and B3 (K6K) to the indicated compounds. Dilutions of compounds were placed directly on the agar surface from high to low concentration as in a. Cer. B, cerastecin B; other abbreviations as above. The LpxC inhibitor CHIR-9025 was used at 4 mg mL−1 in the agar. Photographs are unprocessed and cropped only to fit space constraints and allow easier comparisons between images.

Source data

Extended Data Fig. 3 MsbA-cerastecin B binding, kinetics, and activity in vitro.

a, Kinetic binding parameters and affinity of cerastecin B binding to wild-type MsbA in nanodiscs. b, Activation of the ATPase activity of MsbA in proteoliposome (lipo) or in amphipols (amphi). Tested in duplicate, each data point shown for comparison. c, Michaelis-Menten parameters for cerastecin B stimulation of wild-type MsbA in nanodiscs (mean ± std. dev.). Supporting data. d, Image of instrument output of single cycle binding kinetic data. Red line, experimental sensogram trace; black line, single cycle kinetic fit. Axis details enlarged for readability. e, Image of binding affinity fit data from panel d (red diamonds, experimental data; black line, fit of data). Axis details enlarged for readability.

Source data

Extended Data Fig. 4 Pharmacokinetics of cerastecin D in mice.

Three fasted C57BL/6 mice were dosed subcutaneously at 300 mg kg−1 and tail vein samples were taken at the indicated times for quantitation by LC-MS as described. Data for all three mice are shown with the mean values at each time point in grey. Dashed lavender line indicates the serum-shifted MIC for cerastecin D (Table 1).

Source data

Extended Data Fig. 5 Molecular interactions of inhibitors with MsbA.

a, Cryo-EM structure depicting important amino acid residues in both MsbA monomers involved in cerastecin binding. Predicted hydrogen bonds are shown as yellow dashed lines. b, Overlay of the cerastecin C binding pocket with the existing MsbA binding structures. LPS is shown in stick form, Genentech inhibitor (G907, Fig. 1b) is shown as cyan spheres (both from PDB ID 6BPL), cerastecin C and AMP-PNP are shown as purple and green spheres respectively. c, Overlay of cerastecin C binding with TBT1 (Fig. 1b) (PDB ID 7MET). Ordered (shown in red) and disordered (shown in yellow) protomers of the TBT1-bound structure are overlayed with cerastecin C bound MsbA. TBT1 and cerastecin C molecules are shown as sticks in green and magenta, respectively.

Extended Data Table 1 Antibacterial activity of cerastecins against CRAB clinical isolates
Extended Data Table 2 Antibacterial susceptibility of A. baumannii clinical isolates
Extended Data Table 3 Genotype and cerastecin susceptibility of resistant mutants

Supplementary information

Supplementary Information

Cryo-EM image capture information, RT-qPCR primer sequences and synthesis of cerastecin A–D.

Reporting Summary

Source data

Source Data Fig. 2b,c

MsbA ATPase activation and MsbA (V39F) characterization.

Source Data Fig. 4

In vivo efficacy data.

Source Data Extended Data Fig. 1

Bactericidal activity of cerastecin B.

Source Data Extended Data Fig. 2b,c

Chemical genetic confirmation of cerastecin mechanism of action.

Source Data Extended Data Fig. 3b

MsbA ATPase activation in lipid environments.

Source Data Extended Data Fig. 4

Pharmacokinetics of cerastecin D.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ishchenko, A., Skudlarek, J. et al. Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii. Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41564-024-01667-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research