Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans

Abstract

Mucus barriers accommodate trillions of microorganisms throughout the human body while preventing pathogenic colonization1. In the oral cavity, saliva containing the mucins MUC5B and MUC7 forms a pellicle that coats the soft tissue and teeth to prevent infection by oral pathogens, such as Streptococcus mutans2. Salivary mucin can interact directly with microorganisms through selective agglutinin activity and bacterial binding2,3,4, but the extent and basis of the protective functions of saliva are not well understood. Here, using an ex vivo saliva model, we identify that MUC5B is an inhibitor of microbial virulence. Specifically, we find that natively purified MUC5B downregulates the expression of quorum-sensing pathways activated by the competence stimulating peptide and the sigX-inducing peptide5. Furthermore, MUC5B prevents the acquisition of antimicrobial resistance through natural genetic transformation, a process that is activated through quorum sensing. Our data reveal that the effect of MUC5B is mediated by its associated O-linked glycans, which are potent suppressors of quorum sensing and genetic transformation, even when removed from the mucin backbone. Together, these results present mucin O-glycans as a host strategy for domesticating potentially pathogenic microorganisms without killing them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Salivary mucin MUC5B reduces the expression of genes in quorum-sensing-associated pathways.
Fig. 2: Mucin O-glycans suppress the expression of quorum-sensing genes that regulate competence, virulence and bacteriocin production.
Fig. 3: Mucin glycans reduce genetic transformation by suppressing competence in a manner that is dependent on sugar identity and independent of signal peptide transport.
Fig. 4: Mucin and mucin glycans reduce natural genetic transformation of S. mutans in ex vivo human saliva.

Similar content being viewed by others

Data availability

The high-throughput sequencing data presented in Figs. 1 and 2 are deposited at the Gene Expression Omnibus under accession number GSE163258. All other data are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

Code used for transcriptional analysis is available at GitHub (https://github.com/cwerlang/Smutans-MUC5B-RNASeq).

References

  1. Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cross, B. W. & Ruhl, S. Glycan recognition at the saliva—oral microbiome interface. Cell. Immunol. 333, 19–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tabak, L. A. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu. Rev. Physiol. 57, 547–564 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Deng, L. et al. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog. 10, e1004540 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, 15 (2017).

    Article  PubMed Central  Google Scholar 

  6. Nakano, K., Nomura, R. & Ooshima, T. Streptococcus mutans and cardiovascular diseases. Jpn. Dent. Sci. Rev. 44, 29–37 (2008).

    Article  Google Scholar 

  7. Murchison, H. H., Barrett, J. F., Cardineau, G. A. & Curtiss, R. Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect. Immun. 54, 273–282 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Villedieu, A. et al. Prevalence of tetracycline resistance genes in oral bacteria. Antimicrob. Agents Chemother. 47, 878–882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chansley, P. E. & Kral, T. A. Transformation of fluoride resistance genes in Streptococcus mutans. Infect. Immun. 57, 1968–1970 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from one health and global health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Villedieu, A. et al. Genetic basis of erythromycin resistance in oral bacteria. Antimicrob. Agents Chemother. 48, 2298–2301 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olsen, I., Tribble, G. D., Fiehn, N.-E. & Wang, B.-Y. Bacterial sex in dental plaque. J. Oral Microbiol. 5, 20736 (2013).

    Article  Google Scholar 

  13. Loesche, W. J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353–380 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loesche, W. J., Rowan, J., Straffon, L. H. & Loos, P. J. Association of Streptococcus mutans with human dental decay. Infect. Immun. 11, 1252–1260 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mathews, S. A., Kurien, B. T. & Scofield, R. H. Oral manifestations of Sjögren’s syndrome. J. Dent. Res. 87, 308–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Pramanik, R., Osailan, S. M., Challacombe, S. J., Urquhart, D. & Proctor, G. B. Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur. J. Oral. Sci. 118, 245–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Frenkel, E. S. & Ribbeck, K. Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 7, 29759 (2015).

    Article  PubMed  Google Scholar 

  18. Ahn, S.-J., Wen, Z. T. & Burne, R. A. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect. Immun. 74, 1631–1642 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahn, S.-J., Ahn, S.-J., Wen, Z. T., Brady, L. J. & Burne, R. A. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect. Immun. 76, 4259–4268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duarte, S. et al. Influences of starch and sucrose on Streptococcus mutans biofilms. Oral Microbiol. Immunol. 23, 206–212 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell, T. J. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1, 219–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Frenkel, E. S. & Ribbeck, K. Salivary mucins protect surfaces from colonization by cariogenic bacteria. Appl. Environ. Microbiol. 81, 332–338 (2015).

    Article  PubMed  Google Scholar 

  23. Frenkel, E. S. & Ribbeck, K. Salivary mucins promote the coexistence of competing oral bacterial species. ISME J. 11, 1286–1290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levine, M. Salivary proteins may be useful for determining caries susceptibility. J. Evid. Based Dent. Pract. 13, 91–93 (2013).

    Article  PubMed  Google Scholar 

  25. Thomsson, K. A., Schulz, B. L., Packer, N. H. & Karlsson, N. G. MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 15, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ajdic, D. et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl Acad. Sci. USA 99, 14434–14439 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paik, S., Brown, A., Munro, C. L., Cornelissen, C. N. & Kitten, T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J. Bacteriol. 185, 5967–5975 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicolas, G. G. Detection of putative new mutacins by bioinformatic analysis using available web tools. BioData Min. 4, 22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aframian, N. & Eldar, A. A bacterial tower of Babel: quorum-sensing signaling diversity and its evolution. Annu. Rev. Microbiol. 74, 587–606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merritt, J., Qi, F. & Shi, W. A unique nine-gene comY operon in Streptococcus mutans. Microbiology 151, 157–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Underhill, S. A. M. et al. Intracellular signaling by the comRS system in Streptococcus mutans genetic competence. mSphere 3, e00444-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dufour, D., Cordova, M., Cvitkovitch, D. G. & Lévesque, C. M. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol. 193, 6552–6559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hossain, M. S. & Biswas, I. Mutacins from Streptococcus mutans UA159 are active against multiple streptococcal species. Appl. Environ. Microbiol. 77, 2428–2434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merritt, J. & Qi, F. The mutacins of Streptococcus mutans: regulation and ecology. Mol. Oral. Microbiol 27, 57–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Son, M., Shields, R. C., Ahn, S. J., Burne, R. A. & Hagen, S. J. Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans. FEMS Microbiol. Lett. 362, fnv159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reck, M., Tomasch, J. & Wagner-Döbler, I. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11, e1005353 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perry, J. A., Cvitkovitch, D. G. & Lévesque, C. M. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol. Lett. 299, 261–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Wenderska, I. B. et al. A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol. Lett. 336, 104–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Perry, D. & Kuramitsu, H. K. Genetic transformation of Streptococcus mutans. Infect. Immun. 32, 1295–1297 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desai, K., Mashburn-Warren, L., Federle, M. J. & Morrison, D. A. Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J. Bacteriol. 194, 3774–3780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan, R. et al. Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J. Bacteriol. 194, 3781–3788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khan, R. et al. A positive feedback loop mediated by Sigma X enhances expression of the streptococcal regulator ComR. Sci. Rep. 7, 5984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nakano, K. et al. Streptococcus mutans clonal variation revealed by multilocus sequence typing. J. Clin. Microbiol. 45, 2616–2625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0186-5 (2019).

  45. Visch, L. L., Gravenmade, E. J., Schaub, R. M., Van Putten, W. L. & Vissink, A. A double-blind crossover trial of CMC- and mucin-containing saliva substitutes. Int. J. Oral Max. Surg. 15, 395–400 (1986).

    Article  CAS  Google Scholar 

  46. Silverman, H. S. et al. In vivo glycosylation of mucin tandem repeats. Glycobiology 11, 459–471 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Zalewska, A., Zwierz, K., Zółkowski, K. & Gindzieński, A. Structure and biosynthesis of human salivary mucins. Acta Biochim. Pol. 47, 1067–1079 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wheeler, K. M. et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4, 2146–2154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Werlang, C., Cárcarmo-Oyarce, G. & Ribbeck, K. Engineering mucus to study and influence the microbiome. Nat. Rev. Mater. https://doi.org/10.1038/s41578-018-0079-7 (2019).

  50. Wang, B. X. et al. Mucin glycans signal through the sensor kinase RetS to inhibit virulence-associated traits in Pseudomonas aeruginosa. Curr. Biol. 31, 90–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, Y., Mechref, Y. & Novotny, M. V. Microscale nonreductive release of O-Linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73, 6063–6069 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Khan, R. et al. Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes. mSystems 1, e00038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rayment, S. A., Liu, B., Offner, G. D., Oppenheim, F. G. & Troxler, R. F. Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J. Dent. Res. 79, 1765–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Son, M., Ahn, S.-J., Guo, Q., Burne, R. A. & Hagen, S. J. Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol. Microbiol. 86, 258–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ricomini Filho, A. P., Khan, R., Åmdal, H. A. & Petersen, F. C. Conserved pheromone production, response and degradation by Streptococcus mutans. Front. Microbiol. 10, 2140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hagen, S. J. & Son, M. Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway. Phys. Biol. 14, 015001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hillman, J. D., Mo, J., McDonell, E., Cvitkovitch, D. & Hillman, C. H. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J. Appl. Microbiol. 102, 1209–1219 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Singla, D., Sharma, A., Sachdev, V. & Chopra, R. Distribution of Streptococcus mutans and Streptococcus sobrinus in dental plaque of indian pre-school children using PCR and SB-20M agar medium. J. Clin. Diagn. Res. 10, ZC60–ZC63 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Rodriguez, A. M. et al. Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol. Oral Microbiol. 26, 99–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Darch, S. E. et al. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc. Natl Acad. Sci. USA 115, 4779–4784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, C. et al. Regulation of ciaXRH operon expression and identification of the CiaR regulon in Streptococcus mutans. J. Bacteriol. 192, 4669–4679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi, F., Merritt, J., Lux, R. & Shi, W. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect. Immun. 72, 4895–4899 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Biswas, S. & Biswas, I. Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect. Immun. 73, 6923–6934 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Senadheera, M. D. et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187, 4064–4076 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Domenech, A. et al. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe 27, 544–555 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Merritt, J., Zheng, L., Shi, W. & Qi, F. Genetic characterization of the hdrRM operon: a novel high-cell-density-responsive regulator in Streptococcus mutans. Microbiology 153, 2765–2773 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Okinaga, T., Niu, G., Xie, Z., Qi, F. & Merritt, J. The hdrRM operon of Streptococcus mutans encodes a novel regulatory system for coordinated competence development and bacteriocin production. J. Bacteriol. 192, 1844–1852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alves, L. A. et al. PepO is a target of the two-component systems VicRK and CovR required for systemic virulence of Streptococcus mutans. Virulence 11, 521–536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Underhill, S. A. M., Shields, R. C., Burne, R. A. & Hagen, S. J. Carbohydrate and PepO control bimodality in competence development by Streptococcus mutans. Mol. Microbiol. 112, 1388–1402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaspar, J. R., Lee, K., Richard, B., Walker, A. R. & Burne, R. A. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. ISME J. https://doi.org/10.1038/s41396-020-00789-7 (2020).

  71. Idone, V. et al. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect. Immun. 71, 4351–4360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagasawa, R., Sato, T. & Senpuku, H. Raffinose induces biofilm formation by Streptococcus mutans in low concentrations of sucrose by increasing production of extracellular DNA and fructan. Appl. Environ. Microbiol. 83, e00869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suzuki, Y., Nagasawa, R. & Senpuku, H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J. Infect. Chemother. 23, 634–641 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida, A., Ansai, T., Takehara, T. & Kuramitsu, H. K. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71, 2372–2380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Son, M., Ghoreishi, D., Ahn, S.-J., Burne, R. A. & Hagen, S. J. Sharply tuned pH response of genetic competence regulation in Streptococcus mutans: a microfluidic study of the environmental sensitivity of comX. Appl. Environ. Microbiol. 81, 5622–5631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nielsen, S. S. in Food Analysis Laboratory Manual 137–141 (Springer, 2017).

  77. Aoki, K. et al. The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage- and tissue-specific requirements for cell signaling. J. Biol. Chem. 283, 30385–30400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumagai, T., Katoh, T., Nix, D. B., Tiemeyer, M. & Aoki, K. In-gel β-elimination and aqueous-organic partition for improved O- and sulfoglycomics. Anal. Chem. 85, 8692–8699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anumula, K. R. & Taylor, P. B. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203, 101–108 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Y. et al. The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology 27, 280–284 (2017).

    CAS  PubMed  Google Scholar 

  81. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  83. Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Thissen, D., Steinberg, L. & Kuang, D. Quick and easy implementation of the Benjamini–Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ. Behav. Stat. 27, 77–83 (2002).

    Article  Google Scholar 

  88. Aymanns, S., Mauerer, S., Zandbergen, G., Wolz, C. & Spellerberg, B. High-level fluorescence labeling of Gram-positive pathogens. PLoS ONE 6, e19822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takehara, S., Yanagishita, M., Podyma-Inoue, K. A. & Kawaguchi, Y. Degradation of MUC7 and MUC5B in human saliva. PLoS ONE 8, e69059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Underhill, S. Hagen, S.-J. Ahn and R. Burne for sharing several genetically modified S. mutans UA159 strains; B. Spellerberg for sharing the PBSU101 plasmid; the staff at the Koch Institute Swanson Biotechnology Center for technical support, specifically A. Leshinsky and H. Amoroso in the Biopolymers and Proteomics core; the staff at the MIT BioMicro Center for technical support, especially S. Levine, N. Kamelamela and A. Stortchevoi; and E. S. Frenkel, B. Turner, B. Wang, C. Wu and the entire Ribbeck group at MIT for discussions. We acknowledge funding support from the MIT Deshpande Center, NIBIB/NIH (no. R01-EB017755), NSF CAREER (no. 1454673), NIH Common Fund (no. U01GM125267), the Amgen Scholars Program, the National Institute of Environmental Health Sciences of the NIH (no. P30-ES002109), the NSF MRSEC Program (no. DMR-14-19807), the US Army Research Office under cooperative agreement W911NF-19-2-0026 for the Institute for Collaborative Biotechnologies, the NSF Graduate Research Fellowship Program (no.1122374) and the NIGMS/NIH Interdepartmental Biotechnology Training Program (no. T32 GM008334).

Author information

Authors and Affiliations

Authors

Contributions

C.A.W., W.G.C. and K.M.W. generated mucin-related biochemical reagents and protocols. K.A. performed MS analysis. C.A.W., W.G.C., C.T., C.J.M., A.C.B. and K.K. performed transformation and biofilm formation experiments and developed related protocols. C.A.W. isolated RNA and analysed gene expression data. M.T. and K.R. supervised the study. All of the authors contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Katharina Ribbeck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks Suzanne Dawid, Stephen Hagan, Celine Levesque and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 MUC5AC glycan pools are highly similar to MUC5B glycan pools in composition and effects on S. mutans gene expression and phenotypes.

MUC5AC glycans were isolated from comercially available pig gastric mucin (Millipore Sigma) using beta-elimination51. MUC5AC was purified from pig stomachs as described previously48,50. Sigma PGM is pig gastric mucin purchased from Millipore Sigma that has been dialysed (100 kDa cut-off) and lyophilized. a, A comparison on the most abundant glycan structures (at least 1% of the pool) in MUC5B and MUC5AC (n = 1). b, MUC5AC glycans are relatively enriched for O-GalNAc core-2 structures and display less fucose than MUC5B. c, RNA-Seq was used to profile the effects of 0.1% MUC5AC glycans on gene expression in S. mutans in parallel with studies on MUC5B mucin and MUC5B glycans (n = 2). d, The expression profiles of MUC5B glycans and MUC5AC glycans have a Pearson’s correlation coefficient of 0.93, indicating that they induce highly similar changes in S. mutans global gene expression. e, MUC5AC glycans have a concentration-dependent influence on comS expression. Nonlinear antagonist binding best-fit curves shown (IC50 = 0.05, HillSlope = -6.5, R2 = 0.51). f, RT-qPCR evaluation of S. mutans gene expression after 2 hours incubation in CM with 0.1 wt% of each supplement. We see that all mucins and mucin glycans downregulate the expression of key quorum sensing genes (n > 4, for full data see Source Data). Interestingly, released mucin glycans (both MUC5B and MUC5AC) have stronger effects than intact mucin proteins (MUC5B and MUC5AC polymers). g, Mucins (MUC5B and MUC5AC) and mucin glycans (MUC5B and MUC5AC) reduce transformation frequency of S. mutans at 0.1 wt% in CMedia. While MUC5AC glycans reduce biofilm formation at 0.1 wt% in CMedia, MUC5B glycans did not. h, Growth profiles in CMedia are not altered when supplemented with 0.1 wt% of various monosaccharides. KEY: pig gastric mucin (PGM), N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), and N-acetylneuraminic acid (Neu5Ac). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS = not significant. For f, data are means, and significance was assessed using unpaired t tests with the Benjamini-Hochberg correction87. For g, data are geometric means ± geometric standard deviations, and significance was assessed using the Kruskal-Wallis test followed by an uncorrected Dunn’s test, which does not assume a Gaussian distribution.

Extended Data Fig. 2 MUC5B reduces transformation and biofilm formation of S. mutans across various media conditions.

a, MUC5B reduces transformation frequency in multiple media conditions: CM (25%Todd-Hewitt), 100%Todd-Hewitt, 100%Todd-Hewitt + 5% Bacto Yeast Extract. b, MUC5B reduces transformation rates in CM with or without 1% sucrose supplementation to promote biofilm formation. c, MUC5B prevents biofilm formation in CM with and without 1% sucrose supplementation, as observed previously22. d, MUC5B reduces transformation efficiency in CM supplemented with 1-10 μM CSP. e, MUC5B reduces transformation in DM supplemented with XIP and (f) CM supplemented with XIP. XIP is less effective at inducing competence in CM compared to DM. *P < 0.05, **P < 0.01. Data are geometric mean ± geometric standard deviation, and significance was assessed using nonparametric Mann-Whitney tests.

Extended Data Fig. 3 MUC5B reduces transformation rates in ΔcomC, ΔcomE, and ΔcomS strains.

a, S. mutans UA159 ΔcomC, ΔcomDE, and ΔcomE18 have natural transformation rates similar to wildtype, and supplementation with 1 μM CSP does not alter transformation rates in ΔcomE. MUC5B is able to induce the same reduction of transformation rates in ΔcomC and ΔcomE strains as in the wildtype, with and without supplemental CSP. b, We confirm that the ΔcomS31 strain was not transformable. However, when supplemented with 10 μM XIP, the ΔcomS knockout shows transformation rates similar to wildtype. Here, we see that MUC5B mucin and MUC5AC glycans reduce transformation rates in the ΔcomS knockout supplemented with 10 μM XIP. *P < 0.05, **P < 0.01, ***P < 0.001, NS = not significant, ND = not detected. Data are geometric means ± geometric standard deviations, and significance was assessed using nonparametric Mann-Whitney tests.

Extended Data Fig. 4 MUC5B prevents biofilm formation and transformation in multiple Streptococcus mutans strains.

a, MUC5B reduces biofilm formation of multiple strains of S. mutans (UA159, SJ, and 28BE3) in CM. MUC5B has no significant effect on biofilm formation of S. sobrinus 6715 (S. sob). b, MUC5B reduces transformation of S. mutans strain 28BE3 in CM. **P < 0.01, NS = not significant. Data are geometric means ± geometric standard deviations, and significance was assessed using nonparametric Mann-Whitney tests.

Supplementary information

Supplementary Information

Supplementary Table 3 and Figs. 1 and 2.

Reporting Summary

Supplementary Table 1

Transcriptional analysis of samples treated with 0.1% MUC5B mucin, 0.1% MUC5B glycans and 0.1% MUC5AC glycans.

Supplementary Table 2

Pathway enrichment analysis.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werlang, C.A., Chen, W.G., Aoki, K. et al. Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans. Nat Microbiol 6, 574–583 (2021). https://doi.org/10.1038/s41564-021-00876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00876-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research