Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plutonium oxide melt structure and covalency

Abstract

Advances in nuclear power reactors include the use of mixed oxide fuel, containing uranium and plutonium oxides. The high-temperature behaviour and structure of PuO2–x above 1,800 K remain largely unexplored, and these conditions must be considered for reactor design and planning for the mitigation of severe accidents. Here, we measure the atomic structure of PuO2–x through the melting transition up to 3,000 ± 50 K using X-ray scattering of aerodynamically levitated and laser-beam-heated samples, with O/Pu ranging from 1.57 to 1.76. Liquid structural models consistent with the X-ray data are developed using machine-learned interatomic potentials and density functional theory. Molten PuO1.76 contains some degree of covalent Pu–O bonding, signalled by the degeneracy of Pu 5f and O 2p orbitals. The liquid is isomorphous with molten CeO1.75, demonstrating the latter as a non-radioactive, non-toxic, structural surrogate when differences in the oxidation potentials of Pu and Ce are accounted for. These characterizations provide essential constraints for modelling pertinent to reactor safety design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aerodynamic levitation and laser-beam heating of PuO2–x high-temperature solids and melts.
Fig. 2: X-ray total scattering of high-temperature PuO2–x.
Fig. 3: Structure of molten PuO1.76.
Fig. 4: Structural surrogacy of CeO2–x for PuO2–x melts.

Similar content being viewed by others

Data availability

X-ray structure factor data for the PuO1.76 and CeO1.75 melts are provided in the Supplementary Information. All other relevant data are available from the corresponding author upon reasonable request.

References

  1. Intergovernmental Panel on Climate Change. Climate Change 2022: Mitigation of Climate Change (2022).

  2. Abram, T. & Ion, S. Generation-IV nuclear power: a review of the state of the science. Energy Policy 36, 4323–4330 (2008).

    Article  Google Scholar 

  3. Chang, Y. I. et al. Conceptual design of a pilot-scale pyroprocessing facility. Nucl. Technol. 205, 708–726 (2019).

    Article  Google Scholar 

  4. Carbajo, J. J., Yoder, G. L., Popov, S. G. & Ivanov, V. K. A review of the thermophysical properties of MOX and UO2 fuels. J. Nucl. Mater. 299, 181–198 (2001).

    Article  CAS  Google Scholar 

  5. IAEA. Status and Advances in MOX Fuel Technology (2003).

  6. Fouquet-Métivier, P. et al. Investigation of the solid/liquid phase transitions in the U–Pu–O system. Calphad 80, 102523 (2023).

    Article  Google Scholar 

  7. Guéneau, C., Chartier, A., Fossati, P., Van Brutzel, L. & Martin, P. Thermodynamic and thermophysical properties of the actinide oxides. in Comprehensive Nuclear Materials 2nd edn 111–154 (Elsevier, 2020).

  8. Vauchy, R., Joly, A. & Valot, C. Lattice thermal expansion of Pu1−yAmyO2–x plutonium–americium mixed oxides. J. Appl. Crystallogr. 50, 1782–1790 (2017).

    Article  CAS  Google Scholar 

  9. Boivineau, J. C. Etude par rayons x du diagramme plutonium-oxygene de la temperature ambiante jusqu’a 1100°c. J. Nucl. Mater. 60, 31–38 (1976).

    Article  CAS  Google Scholar 

  10. De Bruycker, F. et al. Reassessing the melting temperature of PuO2. Mater. Today 13, 52–55 (2010).

    Article  Google Scholar 

  11. Ghosh, P. S. et al. Melting behavior of (Th,U)O2 and (Th,Pu)O2 mixed oxides. J. Nucl. Mater. 479, 112–122 (2016).

    Article  CAS  Google Scholar 

  12. Cooper, M. W. D., Murphy, S. T., Rushton, M. J. D. & Grimes, R. W. Thermophysical properties and oxygen transport in the (Ux,Pu1–x)O2 lattice. J. Nucl. Mater. 461, 206–214 (2015).

    Article  CAS  Google Scholar 

  13. Weber, J. K. R. et al. Aerodynamic levitator for in situ X-ray structure measurements on high temperature and molten nuclear fuel materials. Rev. Sci. Instrum. 87, 073902 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Besmann, T. M. & Lindemer, T. B. Chemical thermodynamic representations of <PuO2–x> and <U1–zPuzOw>. J. Nucl. Mater. 130, 489–504 (1985).

    Article  CAS  Google Scholar 

  15. Benmore, C. J. X-ray diffraction from glass. in Modern Glass Characterization 241–270 (John Wiley & Sons, 2015).

  16. McCormack, S. J., Tamalonis, A., Weber, R. J. K. & Kriven, W. M. Temperature gradients for thermophysical and thermochemical property measurements to 3,000 °C for an aerodynamically levitated spheroid. Rev. Sci. Instrum. 90, 15109 (2019).

    Article  Google Scholar 

  17. Uchida, T., Sunaoshi, T., Konashi, K. & Kato, M. Thermal expansion of PuO2. J. Nucl. Mater. 452, 281–284 (2014).

    Article  CAS  Google Scholar 

  18. Gardner, E. R., Markin, T. L. & Street, R. S. The plutonium-oxygen phase diagram. J. Inorg. Nucl. Chem. 27, 541–551 (1965).

    Article  CAS  Google Scholar 

  19. Kato, M., Nakamura, H., Watanabe, M., Matsumoto, T. & Machida, M. Defect chemistry and basic properties of non-stoichiometric PuO2. Defect Diffus. Forum 375, 57–70 (2017).

    Article  Google Scholar 

  20. Skinner, L. B. et al. Molten uranium dioxide structure and dynamics. Science 346, 984–987 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Alderman, O. L. G. et al. The structure of liquid UO2−x in reducing gas atmospheres. Appl. Phys. Lett. 110, 081904 (2017).

    Article  Google Scholar 

  22. Soper, A. K. Empirical potential Monte Carlo simulation of fluid structure. Chem. Phys. 202, 295–306 (1996).

    Article  CAS  Google Scholar 

  23. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  24. Desgranges, L., Baldinozzi, G., Fischer, H. E. & Lander, G. H. Temperature-dependent anisotropy in the bond lengths of UO2 as a result of phonon-induced atomic correlations. J. Phys. Condens. Matter 35, 10LT01 (2023).

    Article  CAS  Google Scholar 

  25. Wen, X. D., Martin, R. L., Henderson, T. M. & Scuseria, G. E. Density functional theory studies of the electronic structure of solid state actinide oxides. Chem. Rev. 113, 1063–1096 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Prodan, I. D., Scuseria, G. E. & Martin, R. L. Covalency in the actinide dioxides: systematic study of the electronic properties using screened hybrid density functional theory. Phys. Rev. B 76, 033101 (2007).

    Article  Google Scholar 

  27. Yang, Y. & Zhang, P. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides. J. Appl. Phys. 113, 013501 (2013).

    Article  Google Scholar 

  28. Andersson, D. A., Lezama, J., Uberuaga, B. P., Deo, C. & Conradson, S. D. Cooperativity among defect sites in AO2+x and A4O9 (A = U, Np, Pu): density functional calculations. Phys. Rev. B 79, 024110 (2009).

    Article  Google Scholar 

  29. Vitova, T. et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 8, 16053 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  PubMed  Google Scholar 

  31. Sivaraman, G. et al. Experimentally driven automated machine-learned interatomic potential for a refractory oxide. Phys. Rev. Lett. 126, 156002 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Zinkevich, M., Djurovic, D. & Aldinger, F. Thermodynamic modelling of the cerium-oxygen system. Solid State Ion. 177, 989–1001 (2006).

    Article  CAS  Google Scholar 

  33. Kim, H. S. et al. Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development. J. Nucl. Mater. 378, 98–104 (2008).

    Article  CAS  Google Scholar 

  34. Kolman, D. G., Park, Y., Stan, M., Hanrahan, R. J. & Butt, D. P. An Assessment of the Validity of Cerium Oxide as a Surrogate for Plutonium Oxide Gallium Removal Studies. Report No. LA-UR-99-0491 (Los Alamos National Lab., 1999).

  35. Darab, J. G. et al. Redox chemistry of plutonium and plutonium surrogates in vitrified nuclear wastes. J. Am. Ceram. Soc. 105, 6627–6639 (2022).

    Article  CAS  Google Scholar 

  36. Cachia, J. N. et al. Enhancing cerium and plutonium solubility by reduction in borosilicate glass. J. Nucl. Mater. 352, 182–189 (2006).

    Article  CAS  Google Scholar 

  37. Feuchter, H. et al. Influence of light and temperature on the extractability of cerium(iv) as a surrogate of plutonium(iv) and its effect on the simulation of an accidental fire in the PUREX process. ACS Omega 4, 12896–12904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, J., Cross, J. N., Diwu, J., Meredith, N. A. & Albrecht-Schmitt, T. E. Comparisons of plutonium, thorium, and cerium tellurite sulfates. Inorg. Chem. 52, 4277–4281 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Zamoryanskaya, M. V. & Burakov, B. E. Feasibility limits in using cerium as a surrogate for plutonium incorporation in zircon, zirconia and pyrochlore. MRS Proc. 663, 301 (2000).

    Article  Google Scholar 

  40. Le Roux, S. & Jund, P. Ring statistics analysis of topological networks: new approach and application to amorphous GeS2 and SiO2 systems. Comput. Mater. Sci. 49, 70–83 (2010).

    Article  Google Scholar 

  41. Sivaraman, G. et al. A combined machine learning and high-energy X-ray diffraction approach to understanding liquid and amorphous metal oxides. J. Phys. Soc. Jpn 91, 091009 (2022).

    Article  Google Scholar 

  42. Minasian, S. G. et al. Quantitative evidence for lanthanide-oxygen orbital mixing in CeO2, PrO2, and TbO2. J. Am. Chem. Soc. 139, 18052–18064 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Guéneau, C. et al. Thermodynamic modelling of advanced oxide and carbide nuclear fuels: description of the U-Pu-O-C systems. J. Nucl. Mater. 419, 145–167 (2011).

    Article  Google Scholar 

  44. Messier, D. R. Evaporation of hypostoichiometric plutonium dioxide from 2,070° to 2,380°K. J. Am. Ceram. Soc. 51, 710–713 (1968).

    Article  CAS  Google Scholar 

  45. Krishnan, S., Weber, J. K. R., Schiffman, R. A., Nordine, P. C. & Reed, R. A. Refractive index of liquid aluminum oxide at 0.6328 μm. J. Am. Ceram. Soc. 74, 881–883 (1991).

    Article  CAS  Google Scholar 

  46. Weber, J. K. R., Benmore, C. J., Jennings, G., Wilding, M. C. & Parise, J. B. Instrumentation for fast in-situ X-ray structure measurements on non-equilibrium liquids. Nucl. Instrum. Methods Phys. Res. A 624, 728–730 (2010).

    Article  CAS  Google Scholar 

  47. Hammersley, A. P. FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Crystallogr. 49, 646–652 (2016).

    Article  CAS  Google Scholar 

  48. Skinner, L. B., Benmore, C. J. & Parise, J. B. Area detector corrections for high quality synchrotron X-ray structure factor measurements. Nucl. Instrum. Methods Phys. Res. A 662, 61–70 (2012).

    Article  CAS  Google Scholar 

  49. Soper, A. K. & Barney, E. R. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Crystallogr. 44, 714–726 (2011).

    Article  CAS  Google Scholar 

  50. Faber, T. E. & Ziman, J. M. A theory of the electrical properties of liquid metals. Philos. Mag. A J. Theor. Exp. Appl. Phys. 11, 153–173 (1965).

    CAS  Google Scholar 

  51. Waasmaier, D. & Kirfel, A. New analytical scattering-factor functions for free atoms and ions. Acta Crystallogr. A51, 416–431 (1995).

    Article  CAS  Google Scholar 

  52. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  CAS  Google Scholar 

  53. Skinner, L. B. et al. A time resolved high energy X-ray diffraction study of cooling liquid SiO2. Phys. Chem. Chem. Phys. 15, 8566–8572 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Soper, A. K. Inelasticity corrections for time-of-flight and fixed wavelength neutron diffraction experiments. Mol. Phys. 107, 1667–1684 (2009).

    Article  CAS  Google Scholar 

  55. Pickup, D., Moss, R. & Newport, R. NXFit: a program for simultaneously fitting X-ray and neutron diffraction pair-distribution functions to provide optimized structural parameters. J. Appl. Crystallogr. 47, 1790–1796 (2014).

    Article  CAS  Google Scholar 

  56. Wilke, S. K., Alderman, O. L. G., Benmore, C. J., Neuefeind, J. & Weber, R. Octahedral oxide glass network in ambient pressure neodymium titanate. Sci. Rep. 12, 8258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alderman, O. L. G., Skinner, L. B., Benmore, C. J., Tamalonis, A. & Weber, J. K. R. Structure of molten titanium dioxide. Phys. Rev. B 90, 094204 (2014).

    Article  CAS  Google Scholar 

  58. Alderman, O. L. G., Benmore, C. J., Neuefeind, J., Tamalonis, A. & Weber, R. Molten barium titanate: a high-pressure liquid silicate analogue. J. Phys. Condens. Matter 31, 20LT01 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. King, S. V. Ring configurations in a random network model of vitreous silica. Nature 213, 1112–1113 (1967).

    Article  CAS  Google Scholar 

  60. Roux, S. Le. Atomes; https://atomes.ipcms.fr/ (2023).

  61. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, J.-L. & Kaltsoyannis, N. DFT + U study of uranium dioxide and plutonium dioxide with occupation matrix control. J. Phys. Chem. C 126, 11426–11435 (2022).

    Article  CAS  Google Scholar 

  65. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article  CAS  Google Scholar 

  66. Wang, H. & Konashi, K. LDA+U study of Pu and PuO2 on ground state with spin–orbital coupling. J. Alloy. Compd. 533, 53–57 (2012).

    Article  CAS  Google Scholar 

  67. Cooper, M. W. D. et al. Development of Xe and Kr empirical potentials for CeO2, ThO2, UO2 and PuO2, combining DFT with high temperature MD. J. Phys. Condens. Matter 28, 405401 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  69. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  Google Scholar 

  71. Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 95, 94203 (2017).

    Article  Google Scholar 

  72. Sivaraman, G. et al. Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. npj Comput. Mater. 6, 104 (2020).

    Article  CAS  Google Scholar 

  73. Sivaraman, G. et al. Automated development of molten salt machine learning potentials: application to LiCl. J. Phys. Chem. Lett. 12, 4278–4285 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Guo, J. et al. Composition-transferable machine learning potential for LiCl-KCl molten salts validated by high-energy X-ray diffraction. Phys. Rev. B 106, 14209 (2022).

    Article  CAS  Google Scholar 

  75. Guo, J. et al. AL4GAP: active learning workflow for generating DFT-SCAN accurate machine-learning potentials for combinatorial molten salt mixtures. J. Chem. Phys. 159, 24802 (2023).

    Article  CAS  Google Scholar 

  76. Cooper, M. W. D., Rushton, M. J. D. & Grimes, R. W. A many-body potential approach to modelling the thermomechanical properties of actinide oxides. J. Phys. Condens. Matter 26, 105401 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Cooper, M. W. D., Murphy, S. T., Fossati, P. C. M., Rushton, M. J. D. & Grimes, R. W. Thermophysical and anion diffusion properties of (Ux,Th1–x)O2. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20140427 (2014).

    Google Scholar 

  78. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  79. Csányi, G. et al. Expressive programming for computational physics in Fortran 95+. IoP Comput. Phys. Newsl. 1 (2007).

  80. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  81. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE) through grants DE-SC0018601 and DE-SC0015241 and the Argonne Laboratory Directed Research and Development program. X-ray diffraction measurements were made at Sector 6-ID-D of the Advanced Photon Source, a US DOE Office of Science User Facility, operated by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Computational modeling resources were provided by Bebop, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. We gratefully acknowledge J. Vacca, L. Soderholm, W. VanWingeren and E. Schmidt for technical advice and safety management contributions that enabled the X-ray measurements; M. Schvaneveldt for assembling the sample chamber; A. Hebden for sample chamber design considerations; and S. Salbeck, Hadco Tool LLC, for advice and fabrication of the sample handling, nozzle housing and sample die components.

Author information

Authors and Affiliations

Authors

Contributions

C.J.B., O.L.G.A., M.A.W. and R.W. conceived the idea for X-ray diffraction measurements and developed the sample chamber with A.T. O.L.G.A. wrote the proposal for X-ray beamtime. S.K.W., C.J.B. and R.W. conducted the X-ray measurements. S.K.W. analysed the X-ray data and performed the EPSR measurements with guidance from C.J.B., O.L.G.A. and R.W. G.S. developed the GAP from DFT calculations and performed the MD simulations, under the guidance of D.A.A. M.D.R. and K.L.H. prepared the PuO2 samples and facilitated radioactive-sample handling under the guidance of M.A.W. S.K.W. prepared the manuscript draft, with revisions contributed by all authors.

Corresponding author

Correspondence to Stephen K. Wilke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Gerry Lander, Dario Manara and Romain Vauchy for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fitting of Gaussian distributions to the total PDF for molten PuO1.76.

a, Fitting a single PuO distribution to the leading edge of the first peak, and a single PuPu distribution to the leading edge of the second peak. b, Optimized peak fitting for all pair correlations, guided by the bond distances and coordinations anticipated from f-PuO2 and α-Pu2O3 crystal structures.

Extended Data Fig. 2 Ce-O phase diagram.

Colored markers show oxygen gas partial pressure (pO2) isobars32. The redox trajectory for a sample heated under pure O2 is shaded in pink.

Extended Data Fig. 3 Faber-Ziman X-ray weighting factors.

a, PuO1.76. b, CeO1.75. From Eq. 2.

Extended Data Fig. 4 Examples of sample temperature during levitation and laser beam heating.

a, Emissivity-corrected temperature measurements (10 Hz acquisition) from the optical pyrometer for PuO2−x solid heated under 5% CO (Ar balance). Laser power was increased incrementally, interspersed with X-ray diffraction measurements taken while the sample was held isothermally. b, Zoomed-in view of a single isotherm from (a). For the time period 364–416 s, the temperature mean was 2140 K with a standard deviation of 71 K. c, Temperature of molten PuO1.57 during a different heating run than (a-b). X-ray measurements were analyzed for the time period 105–110 s, which had a temperature mean of 2730 K and a standard deviation of 2 K.

Extended Data Fig. 5 X-ray diffraction and Rietveld refinements for selected crystalline samples.

a, Initial Pu-O material before heating. b, Pure f-PuO2 after heating under O2. The observed X-ray diffraction patterns (green curves) and calculated Rietveld refinement models (orange curves) are compared against the Bragg reflections for f-PuO2, α-Pu2O3, and β-Pu2O3 (blue, teal, and red vertical ticks). The black curves show the differences between the X-ray data and refinement models, divided by the estimated standard uncertainties.

Extended Data Fig. 6 Fitting of a Lorentzian function to the structure factor’s first principal peak, for molten PuO1.76.

The fit53 includes the Lorentzian contribution mirrored across Q = 0 Å−1 and is constrained15 to \(S\left(0\right)=1-\left\langle\; {f(0)}^{2}\right\rangle /{\left\langle\; f(0)\right\rangle }^{2}={-}1.113\). The X-ray diffraction data were extrapolated to Q = 0 using this Lorentzian fit, prior to the Fourier transform to obtain the PDFs (Eqs. 3, 4).

Extended Data Fig. 7 Effect of top hat convolution on X-ray data.

Comparison of the (a) X-ray structure factor and (b) total PDF for molten PuO1.76, processed with and without the top hat convolution54 in GudrunX. For this comparison, Qmax = 11.9 Å−1 was used for both structure factors to avoid large truncation oscillations in the PDF without top hat.

Extended Data Table 1 Faber-Ziman weighting factors

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–4 and discussion.

Supplementary Data 1

X-ray total structure factor for molten PuO1.76.

Supplementary Data 2

X-ray total structure factor for molten CeO1.75.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilke, S.K., Benmore, C.J., Alderman, O.L.G. et al. Plutonium oxide melt structure and covalency. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01883-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing