Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Permanent fluidic magnets for liquid bioelectronics

Abstract

Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid. This structure has high coercivity and permanent magnetization, with long-term magnetization stability. We establish a scaling theory model to decipher the permanent fluid magnet formation criteria and formulate a general assembly guideline. Further, we develop injectable and retrievable permanent-fluidic-magnet-based liquid bioelectronics for highly sensitive, self-powered wireless cardiovascular monitoring. Overall, our findings highlight the potential of permanent fluidic magnets as an ultrasoft material for liquid devices and systems, from bioelectronics to robotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Creating the PFM and comparing it with traditional magnetic systems.
Fig. 2: Understanding the PFM formation process.
Fig. 3: Characterizing the PFM.
Fig. 4: PFM-based liquid bioelectronics.
Fig. 5: In vivo injectable arrhythmia monitoring.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Other relevant information in this study is included in Supplementary Information. Further data are available from the corresponding author upon request.

References

  1. Yu, W. et al. A ferrobotic system for automated microfluidic logistics. Sci. Robot. 5, eaba4411 (2020).

    Article  PubMed  Google Scholar 

  2. Zhang, J. et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 12, 7136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, X. et al. Reconfigurable ferromagnetic liquid droplets. Science 365, 264–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J. H. et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, C. et al. Gravitational stability of suspensions of attractive colloidal particles. Phys. Rev. Lett. 99, 028303 (2007).

    Article  PubMed  Google Scholar 

  6. Buscall, R. The sedimentation of concentrated colloidal suspensions. Colloids Surf. 43, 33–53 (1990).

    Article  CAS  Google Scholar 

  7. Manoharan Vinothan, N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Perrin, J. Atoms. Authorised translation by D.L. Hammick (Constable, 1916).

  9. Wang, C. et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5, 749–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Weitz, D. A. Soft materials evolution and revolution. Nat. Mater. 21, 986–988 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, D. H. et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9, 165–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Fan, X., Dong, X., Karacakol, A. C., Xie, H. & Sitti, M. Reconfigurable multifunctional ferrofluid droplet robots. Proc. Natl Acad. Sci. USA 117, 27916–27926 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mertelj, A., Lisjak, D., Drofenik, M. & Copic, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 504, 237–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Vecchio, D. A., Mahler, S. H., Hammig, M. D. & Kotov, N. A. Structural analysis of nanoscale network materials using graph theory. ACS Nano 15, 12847–12859 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Viveros, R. D. et al. Advanced one- and two-dimensional mesh designs for injectable electronics. Nano Lett. 19, 4180–4187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong, G. et al. Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett. 15, 6979–6984 (2015).

    Article  PubMed  Google Scholar 

  22. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Z. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 29, 1807560 (2019).

    Article  Google Scholar 

  24. Hwang, J. C. et al. In situ diagnosis and simultaneous treatment of cardiac diseases using a single-device platform. Sci. Adv. 8, eabq0897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. About Multiple Cause of Death, 1999–2020 (National Center for Health Statistics, Centers for Disease Control and Prevention, 2022).

  26. Fernández-Ruiz, I. Atrial fibrillation induces functional remodelling of the left ventricle. Nat. Rev. Cardiol. 19, 285 (2022).

    Article  PubMed  Google Scholar 

  27. Witkowski, F. X. et al. Spatiotemporal evolution of ventricular fibrillation. Nature 392, 78–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Schiavone, G. & Lacour Stéphanie, P. Conformable bioelectronic interfaces: mapping the road ahead. Sci. Transl. Med. 11, eaaw5858 (2019).

    Article  PubMed  Google Scholar 

  29. Fernández-Ruiz, I. A robotic heart sleeve to keep the beat. Nat. Rev. Cardiol. 14, 129 (2017).

    Article  PubMed  Google Scholar 

  30. Bannerman, D., Pascual-Gil, S. & Radisic, M. An optimal gel patch for the injured heart. Nat. Biomed. Eng. 3, 592–593 (2019).

    Article  PubMed  Google Scholar 

  31. Implants that vanish. Nat. Biomed. Eng. 3, 585 (2019).

  32. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ryu, H. et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12, 4374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, X. et al. Ferromagnetic liquid droplets with adjustable magnetic properties. Proc. Natl Acad. Sci. USA 118, e2017355118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Durable miniaturized bioelectronics. Nat. Biomed. Eng. 1, 0053 (2017).

Download references

Acknowledgements

We acknowledge the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles, for the startup support. J.C. acknowledges the Vernroy Makoto Watanabe Excellence in Research Award at the UCLA Samueli School of Engineering, the Office of Naval Research Young Investigator Award (award ID N00014-24-1-2065), NIH Grant (award ID R01 CA287326), the American Heart Association Innovative Project Award (award ID 23IPA1054908), the American Heart Association Transformational Project Award (award ID 23TPA1141360), the American Heart Association’s Second Century Early Faculty Independence Award (award ID 23SCEFIA1157587), the Brain & Behavior Research Foundation Young Investigator Grant (grant number 30944), and the NIH National Center for Advancing Translational Science UCLA CTSI (grant number KL2TR001882). J.C. and T.T. acknowledge the support from Caltech/UCLA joint NIH T32 Training Grant (award ID T32EB027629). S.L. acknowledges support from an NIH Grant (award ID R01 NS126918). We also acknowledge the insightful comments and careful editing from D. Di Carlo and the UCLA Writing Center for a one-on-one personalized writing consultation.

Author information

Authors and Affiliations

Authors

Contributions

J.C. guided the whole research project. X.Z., Y.Z. and J.C. conceived the idea, designed the experiment, analysed the data, drew the figures and composed the paper. J.X., J.L., T.T. and G.C. assisted in device fabrication and testing. S.L., Y.S. and X.Z. performed the in vivo animal study. All authors have read the paper, agreed to its content and approved the submission.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

J.C., X.Z. and Y.Z. have filed a patent related to this work under the US provisional patent application no. 63/596,815 from the University of California, Los Angeles. The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Wei Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Table 1, Notes 1–10 and References.

Reporting Summary

Supplementary Video 1

The 3D ORM network structure in the carrier fluid.

Supplementary Video 2

A continuous magnetic network structure forming in the carrier fluid.

Supplementary Video 3

ORM networks dynamically self-assemble, disassemble and reassemble.

Supplementary Video 4

Separation of PFM droplets in response to an external rotating magnetic field.

Supplementary Video 5

PFM droplet merging in response to the external rotating magnetic field.

Supplementary Video 6

PFM droplet moving under an external magnetic field.

Supplementary Video 7

PFM droplet buoyant in the water responding to the external rotating magnetic field.

Supplementary Video 8

Ferrofluid droplet buoyant in the water responding to the external rotating magnetic field.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhou, Y., Song, Y. et al. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 23, 703–710 (2024). https://doi.org/10.1038/s41563-024-01802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01802-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing