Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Van der Waals epitaxy of tunable moirés enabled by alloying

Abstract

The unique physics in moiré superlattices of twisted or lattice-mismatched atomic layers holds great promise for future quantum technologies. However, twisted configurations are thermodynamically unfavourable, making accurate twist angle control during growth implausible. While rotationally aligned, lattice-mismatched moirés such as WSe2/WS2 can be synthesized, they lack the critical moiré period tunability, and their formation mechanisms are not well understood. Here, we report the thermodynamically driven van der Waals epitaxy of moirés with a tunable period from 10 to 45 nanometres, using lattice mismatch engineering in two WSSe layers with adjustable chalcogen ratios. Contrary to conventional epitaxy, where lattice-mismatch-induced stress hinders high-quality growth, we reveal the key role of bulk stress in moiré formation and its unique interplay with edge stress in shaping the moiré growth modes. Moreover, the superlattices display tunable interlayer excitons and moiré intralayer excitons. Our studies unveil the epitaxial science of moiré synthesis and lay the foundations for moiré-based technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of moiré vdW heterostructures.
Fig. 2: Tunable moiré pattern in WSySe2y/WSxSe2x vdW HSs.
Fig. 3: Moiré growth mechanisms.
Fig. 4: Moiré uniformity.
Fig. 5: Excitons in grown moiré vdW HSs.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Other supporting data and very large files are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Rong, Z. Y. & Kuiper, P. Electronic effects in scanning tunneling microscopy: moiré pattern on a graphite surface. Phys. Rev. B 48, 17427–17431 (1993).

    ADS  CAS  Google Scholar 

  2. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    ADS  CAS  PubMed  Google Scholar 

  4. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  CAS  PubMed  Google Scholar 

  6. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76 (2019).

    ADS  CAS  PubMed  Google Scholar 

  7. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66 (2019).

    ADS  CAS  PubMed  Google Scholar 

  8. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71 (2019).

    ADS  CAS  PubMed  Google Scholar 

  9. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018).

    ADS  CAS  PubMed  Google Scholar 

  11. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  CAS  PubMed  Google Scholar 

  12. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Google Scholar 

  13. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  CAS  PubMed  Google Scholar 

  14. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  PubMed  Google Scholar 

  15. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS  Google Scholar 

  16. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    ADS  CAS  PubMed  Google Scholar 

  17. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    ADS  CAS  PubMed  Google Scholar 

  18. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    ADS  CAS  PubMed  Google Scholar 

  19. Ahn, S. J. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 361, 782–786 (2018).

    ADS  CAS  PubMed  Google Scholar 

  20. Sun, L. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 12, 2391 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022).

    ADS  CAS  PubMed  Google Scholar 

  22. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    ADS  CAS  PubMed  Google Scholar 

  23. Lin, Y.-C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015).

    ADS  CAS  PubMed  Google Scholar 

  24. Li, B. et al. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2, 1600298 (2016).

    ADS  Google Scholar 

  25. Li, X. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2, e1501882 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  26. Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).

    CAS  PubMed  Google Scholar 

  27. Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  28. Carozo, V. et al. Excitonic processes in atomically-thin MoSe2/MoS2 vertical heterostructures. 2D Mater. 5, 031016 (2018).

    Google Scholar 

  29. Fu, Q. et al. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater. 30, 4001–4007 (2018).

    CAS  Google Scholar 

  30. Wu, R. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Google Scholar 

  31. Wu, X. et al. Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties. Nano Res. 12, 3123–3128 (2019).

    CAS  Google Scholar 

  32. Zheng, W. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 (2019).

    Google Scholar 

  33. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    ADS  CAS  PubMed  Google Scholar 

  34. Li, B. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021).

    ADS  CAS  PubMed  Google Scholar 

  35. Chen, L. et al. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9, 8368–8375 (2015).

    CAS  PubMed  Google Scholar 

  36. Zhang, X. et al. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13, 3341–3352 (2019).

    CAS  PubMed  Google Scholar 

  37. Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    CAS  PubMed  Google Scholar 

  38. Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    ADS  CAS  PubMed  Google Scholar 

  39. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    ADS  CAS  PubMed  Google Scholar 

  40. Deng, J., Fampiou, I., Liu, J. Z., Ramasubramaniam, A. & Medhekar, N. V. Edge stresses of non-stoichiometric edges in two-dimensional crystals. Appl. Phys. Lett. 100, 251906 (2012).

    ADS  Google Scholar 

  41. Liu, J. et al. Interpretable molecular models for molybdenum disulfide and insight into selective peptide recognition. Chem. Sci. 11, 8708–8722 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fortin-Deschênes, M. et al. Dynamics of antimonene–graphene van der Waals growth. Adv. Mater. 31, 1900569 (2019).

    Google Scholar 

  43. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009).

    ADS  Google Scholar 

  44. Tetlow, H. et al. Growth of epitaxial graphene: theory and experiment. Phys. Rep. 542, 195–295 (2014).

    ADS  CAS  Google Scholar 

  45. Levita, G., Molinari, E., Polcar, T. & Righi, M. C. First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene. Phys. Rev. B 92, 085434 (2015).

    ADS  Google Scholar 

  46. Amani, M. et al. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 104, 203506 (2014).

    ADS  Google Scholar 

  47. Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    ADS  PubMed  Google Scholar 

  48. Chae, W. H., Cain, J. D., Hanson, E. D., Murthy, A. A. & Dravid, V. P. Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111, 143106 (2017).

    ADS  Google Scholar 

  49. Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

    Google Scholar 

  50. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    ADS  CAS  PubMed  Google Scholar 

  51. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    ADS  Google Scholar 

  52. Zhou, S., Ning, J., Sun, J. & Srolovitz, D. J. Composition-induced type I and direct bandgap transition metal dichalcogenides alloy vertical heterojunctions. Nanoscale 12, 201–209 (2020).

    CAS  PubMed  Google Scholar 

  53. Duan, X. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016).

    ADS  CAS  PubMed  Google Scholar 

  54. Fortin-Deschênes, M. et al. 2D antimony–arsenic alloys. Small 16, 1906540 (2020).

    Google Scholar 

  55. Kezilebieke, S. et al. Electronic and magnetic characterization of epitaxial CrBr3 monolayers on a superconducting substrate. Adv. Mater. 33, 2006850 (2021).

    CAS  Google Scholar 

  56. Gao, Z.-Y. et al. Experimental realization of atomic monolayer Si9C15. Adv. Mater. 34, 2204779 (2022).

    CAS  Google Scholar 

  57. Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    ADS  PubMed  Google Scholar 

  58. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    ADS  CAS  PubMed  Google Scholar 

  59. Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60–66 (2015).

    Google Scholar 

  60. Ma, D. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 8, 3662–3672 (2015).

    CAS  Google Scholar 

  61. Rangel DaCosta, L. et al. Prismatic 2.0 – simulation software for scanning and high resolution transmission electron microscopy (STEM and HRTEM). Micron 151, 103141 (2021).

    CAS  PubMed  Google Scholar 

  62. Rosenberger, M. R. et al. Nano-“squeegee” for the creation of clean 2D material interfaces. ACS Appl. Mater. Interfaces 10, 10379–10387 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

STEM images were collected by A. Penn. M.F.-D. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de Recherche du Québec (FRQNT). M.F.-D. and F.X. acknowledge the partial support from the Government of Israel and Yale University. K.W. and T.T. acknowledge support from Japan Society for the Promotion of Science KAKENHI (grant nos 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

M.F.-D. conceived and carried out the experiments and simulations. M.F.-D. and F.X. analysed the results and wrote the manuscript. K.W. and T.T. synthesized the hBN crystals.

Corresponding authors

Correspondence to Matthieu Fortin-Deschênes or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Lain-Jong Li, David Geohegan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Discussion.

Source data

Source Data Fig. 2

Plot of moiré lattice parameter versus ΔSe.

Source Data Fig. 3

Simulation results.

Source Data Fig. 4

Histograms.

Source Data Fig. 5

PL data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortin-Deschênes, M., Watanabe, K., Taniguchi, T. et al. Van der Waals epitaxy of tunable moirés enabled by alloying. Nat. Mater. 23, 339–346 (2024). https://doi.org/10.1038/s41563-023-01596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01596-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing