Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis reveals that vertebrates enhance plant litter decomposition at the global scale

Abstract

Evidence is mounting that vertebrate defaunation greatly impacts global biogeochemical cycling. Yet, there is no comprehensive assessment of the potential vertebrate influence over plant decomposition, despite litter decay being one of the largest global carbon fluxes. We therefore conducted a global meta-analysis to evaluate vertebrate effects on litter mass loss and associated element release across terrestrial and aquatic ecosystems. Here we show that vertebrates affected litter decomposition by various direct and indirect pathways, increasing litter mass loss by 6.7% on average, and up to 34.4% via physical breakdown. This positive vertebrate impact on litter mass loss was consistent across contrasting litter types (woody and non-woody), climatic regions (boreal, temperate and tropical), ecosystem types (aquatic and terrestrial) and vertebrate taxa, but disappeared when evaluating litter nitrogen and phosphorus release. Moreover, we found evidence of interactive effects between vertebrates and non-vertebrate decomposers on litter mass loss, and a larger influence of vertebrates at mid-to-late decomposition stages, contrasting with the invertebrate effect known to be strongest at early decomposition stage. Our synthesis demonstrates a global vertebrate control over litter mass loss, and further stresses the need to account for vertebrates when assessing the impacts of biodiversity loss on biogeochemical cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual model of vertebrate effects on plant litter decomposition and attendant nutrient release rates.
Fig. 2: Map showing the location of studies used in the meta-analysis.
Fig. 3: Analysing vertebrate effects on plant decomposition and nutrient release across various pathways, litter types, ecosystems and climates.
Fig. 4: Assessing vertebrate effects on plant decomposition (mass remaining, all litter types) across various vertebrate groups and litterbag mesh sizes.
Fig. 5: Vertebrate effects on plant decomposition (mass remaining, all litter types) and associated nutrient release at different decomposition intervals.

Similar content being viewed by others

Data availability

The data used in this meta-analysis have been archived on Figshare (https://doi.org/10.6084/m9.figshare.23320955)176. The missing data on climatic conditions were gathered from the WorldClim database (https://www.worldclim.org/). The data used to create Supplementary Fig. 3a, depicting woodpecker occurrence, were obtained from the Global Biodiversity Information Facility website (https://www.gbif.org/). Source data are provided with this paper.

Code availability

The code used in this study is available at https://doi.org/10.6084/m9.figshare.23320955.

References

  1. Martin, A. H., Pearson, H. C., Saba, G. K. & Olsen, E. M. Integral functions of marine vertebrates in the ocean carbon cycle and climate change mitigation. One Earth 4, 680–693 (2021).

    ADS  Google Scholar 

  2. Schmitz, O. J. et al. Trophic rewilding can expand natural climate solutions. Nat. Clim. Change 13, 324–333 (2023).

    ADS  Google Scholar 

  3. Sobral, M., Schleuning, M. & Martinez Cortizas, A. Trait diversity shapes the carbon cycle. Trends Ecol. Evol. 38, 602–604 (2023).

    PubMed  Google Scholar 

  4. Otero, X. L., De La Pena-Lastra, S., Perez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  5. Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).

    ADS  CAS  Google Scholar 

  6. Kristensen, J. A., Svenning, J. C., Georgiou, K. & Malhi, Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. 37, 117–128 (2022).

    CAS  PubMed  Google Scholar 

  7. Schmitz, O. J. & Leroux, S. J. Food webs and ecosystems: linking species interactions to the carbon cycle. Annu. Rev. Ecol. Evol. Syst. 51, 271–295 (2020).

    Google Scholar 

  8. Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon.Nat. Ecol. Evol. 1, 1670–1676 (2017).

    PubMed  Google Scholar 

  9. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    ADS  CAS  PubMed  Google Scholar 

  10. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS  CAS  PubMed  Google Scholar 

  11. Norris, K., Terry, A., Hansford, J. P. & Turvey, S. T. Biodiversity conservation and the Earth system: mind the gap. Trends Ecol. Evol. 35, 919–926 (2020).

    PubMed  PubMed Central  Google Scholar 

  12. Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).

    PubMed  Google Scholar 

  13. Tanentzap, A. J. & Coomes, D. A. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biol. Rev. 87, 72–94 (2012).

    PubMed  Google Scholar 

  14. Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  17. Jia, S. et al. Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, X. Y. et al. Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis. Sci. Rep. 6, 33190 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forbes, E. S. et al. Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019).

    Google Scholar 

  20. Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    ADS  Google Scholar 

  21. Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    ADS  CAS  PubMed  Google Scholar 

  22. Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).

    ADS  CAS  Google Scholar 

  23. Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).

    ADS  CAS  Google Scholar 

  24. Bradford, M. A. et al. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).

    CAS  Google Scholar 

  25. Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. A’Bear, A. D., Boddy, L. & Jones, T. H. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob. Change Biol. 18, 1823–1832 (2012).

    ADS  Google Scholar 

  27. Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. The impact of invertebrate decomposers on plants and soil. New Phytol. 231, 2142–2149 (2021).

    PubMed  Google Scholar 

  28. Bishop, T. R. et al. Clarifying terrestrial recycling pathways. Trends Ecol. Evol. 36, 9–11 (2021).

    PubMed  Google Scholar 

  29. Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    ADS  CAS  PubMed  Google Scholar 

  30. Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).

    ADS  CAS  PubMed  Google Scholar 

  31. Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).

    PubMed  Google Scholar 

  32. Wardle, D. A., Barker, G. M., Yeates, G. W., Bonner, K. I. & Ghani, A. Introduced browsing mammals in New Zealand natural forests: aboveground and belowground consequences. Ecol. Monogr. 71, 587–614 (2001).

    Google Scholar 

  33. Landman, M., Mgqatsa, N., Cromsigt, J. P. G. M. & Kerley, G. I. H. Elephant effects on treefall and logfall highlight the absence of megaherbivores in coarse woody debris conceptual frameworks. For. Ecol. Manage. 438, 57–62 (2019).

    Google Scholar 

  34. Nummi, P., Vehkaoja, M., Pumpanen, J. & Ojala, A. Beavers affect carbon biogeochemistry: both short-term and long-term processes are involved. Mammal Rev. 48, 298–311 (2018).

    Google Scholar 

  35. Asner, G. P. & Levick, S. R. Landscape-scale effects of herbivores on treefall in African savannas. Ecol. Lett. 15, 1211–1217 (2012).

    PubMed  Google Scholar 

  36. Smith, J. G. & Throop, H. L. Animal generation of green leaf litter in an arid shrubland enhances decomposition by altering litter quality and location. J. Arid. Environ. 151, 15–22 (2018).

    ADS  Google Scholar 

  37. Hyvarinen, O. et al. Megaherbivore impacts on ecosystem and Earth system functioning: the current state of the science. Ecography 44, 1579–1594 (2021).

    ADS  Google Scholar 

  38. Andriuzzi, W. S. & Wall, D. H. Responses of belowground communities to large aboveground herbivores: meta-analysis reveals biome-dependent patterns and critical research gaps. Glob. Change Biol. 23, 3857–3868 (2017).

    ADS  Google Scholar 

  39. Schrama, M. et al. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 172, 231–243 (2013).

    ADS  PubMed  Google Scholar 

  40. Mallen‐Cooper, M., Nakagawa, S., Eldridge, D. J. & Keith, S. Global meta‐analysis of soil‐disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Glob. Ecol. Biogeogr. 28, 661–679 (2019).

    Google Scholar 

  41. Leroux, S. J., Wiersma, Y. F. & Vander Wal, E. Herbivore impacts on carbon cycling in boreal forests. Trends Ecol. Evol. 35, 1001–1010 (2020).

    PubMed  Google Scholar 

  42. Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).

    ADS  CAS  PubMed  Google Scholar 

  43. van Klink, R. et al. Defoliation and soil compaction jointly drive large-herbivore grazing effects on plants and soil arthropods on clay soil. Ecosystems 18, 671–685 (2015).

    Google Scholar 

  44. Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    PubMed  Google Scholar 

  45. Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nat. Geosci. 6, 191–194 (2013).

    ADS  CAS  Google Scholar 

  46. Breviglieri, C. P. B. & Romero, G. Q. Terrestrial vertebrate predators drive the structure and functioning of aquatic food webs. Ecology 98, 2069–2080 (2017).

    PubMed  Google Scholar 

  47. Ocasio-Torres, M. E., Crowl, T. A. & Sabat, A. M. Effects of the presence of a predatory fish and the phenotype of its prey (a shredding shrimp) on leaf litter decomposition. Freshw. Biol. 60, 2286–2296 (2015).

    Google Scholar 

  48. Laking, A. E. et al. Salamander loss alters litter decomposition dynamics. Sci. Total Environ. 776, 145994 (2021).

    ADS  CAS  PubMed  Google Scholar 

  49. Osono, T., Hobara, S., Koba, K. & Kameda, K. Reduction of fungal growth and lignin decomposition in needle litter by avian excreta. Soil Biol. Biochem. 38, 1623–1630 (2006).

    CAS  Google Scholar 

  50. Osono, T., Hobara, S., Koba, K., Kameda, K. & Takeda, H. Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biol. Biochem. 38, 517–525 (2006).

    CAS  Google Scholar 

  51. Zhang, Y., Negishi, J. N., Richardson, J. S. & Kolodziejczyk, R. Impacts of marine-derived nutrients on stream ecosystem functioning. Proc. R. Soc. B 270, 2117–2123 (2003).

    PubMed  PubMed Central  Google Scholar 

  52. Montana, C. G. et al. Revisiting “what do tadpoles really eat?” A 10-year perspective. Freshw. Biol. 64, 2269–2282 (2019).

    Google Scholar 

  53. Reynolds, V., Lloyd, A. W., Babweteera, F. & English, C. J. Decaying Raphia farinifera palm trees provide a source of sodium for wild chimpanzees in the Budongo Forest, Uganda. PLoS ONE 4, e6194 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. Mancilla-Leyton, J. M., Sanchez-Lineros, V. & Vicente, A. M. Influence of grazing on the decomposition of Pinus pinea L. needles in a silvopastoral system in Doana, Spain. Plant Soil 373, 173–181 (2013).

    CAS  Google Scholar 

  55. Wei, Y. Q. et al. Transformation of litter carbon to stable soil organic matter is facilitated by ungulate trampling. Geoderma 385, 114828 (2021).

    ADS  CAS  Google Scholar 

  56. Chassain, J., Vieublé Gonod, L., Chenu, C. & Joimel, S. Role of different size classes of organisms in cropped soils: what do litterbag experiments tell us? A meta-analysis. Soil Biol. Biochem. 162, 108394 (2021).

    CAS  Google Scholar 

  57. Bradford, M. A., Tordoff, G. M., Eggers, T., Jones, T. H. & Newington, J. E. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99, 317–323 (2002).

    ADS  Google Scholar 

  58. Rodriguez-Lozano, P., Rieradevall, M. & Prat, N. Top predator absence enhances leaf breakdown in an intermittent stream. Sci. Total Environ. 572, 1123–1131 (2016).

    ADS  CAS  PubMed  Google Scholar 

  59. Fukami, T. et al. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).

    PubMed  Google Scholar 

  60. Jabiol, J. et al. Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. J. Anim. Ecol. 82, 1042–1051 (2013).

    PubMed  Google Scholar 

  61. García‐Palacios, P., Shaw, E. A., Wall, D. H. & Hattenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).

    PubMed  Google Scholar 

  62. Guo, C., Tuo, B., Ci, H., Yan, E. R. & Cornelissen, J. H. C. Dynamic feedbacks among tree functional traits, termite populations and deadwood turnover. J. Ecol. 109, 1578–1590 (2021).

    Google Scholar 

  63. Zhou, S. et al. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. J. Ecol. 108, 2283–2297 (2020).

    Google Scholar 

  64. Harmon, M. E. The role of woody detritus in biogeochemical cycles: past, present, and future. Biogeochemistry 154, 349–369 (2021).

    Google Scholar 

  65. Liu, J. et al. Synergistic effects: a common theme in mixed-species litter decomposition. New Phytol. 227, 757–765 (2020).

    PubMed  Google Scholar 

  66. Kou, L. et al. Diversity–decomposition relationships in forests worldwide. eLife 9, e55813 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Njoroge, D. M., Chen, S. C., Zuo, J., Dossa, G. G. O. & Cornelissen, J. H. C. Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. J. Ecol. 110, 659–672 (2022).

    Google Scholar 

  68. Xiao, W. et al. Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Glob. Ecol. Biogeogr. 29, 2261–2272 (2020).

    Google Scholar 

  69. García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Yue, K. et al. Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biol. Rev. 97, 2023–2038 (2022).

    PubMed  Google Scholar 

  71. Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).

    ADS  CAS  PubMed  Google Scholar 

  72. Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).

    CAS  PubMed  Google Scholar 

  73. He, M. et al. Grazing intensity significantly changes the C:N:P stoichiometry in grassland ecosystems. Glob. Ecol. Biogeogr. 29, 355–369 (2019).

    Google Scholar 

  74. Bardgett, R. D., Wardle, D. A. & Yeates, G. W. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol. Biochem. 30, 1867–1878 (1998).

    CAS  Google Scholar 

  75. Ayres, E. et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41, 606–610 (2009).

    CAS  Google Scholar 

  76. Freschet, G. T., Aerts, R. & Cornelissen, J. H. C. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J. Ecol. 100, 619–630 (2012).

    Google Scholar 

  77. Lai, L. & Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 15, e0236638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Eldridge, D. J. et al. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. ISME J. 9, 2671–2681 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Eldridge, D. J., Whitford, W. G. & Duval, B. D. Animal disturbances promote shrub maintenance in a desertified grassland. J. Ecol. 97, 1302–1310 (2009).

    Google Scholar 

  80. Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).

    PubMed  Google Scholar 

  81. Decker, O., Leonard, S. & Gibb, H. Rainfall-dependent impacts of threatened ecosystem engineers on organic matter cycling. Funct. Ecol. 33, 2254–2266 (2019).

    Google Scholar 

  82. Zhu, Y. et al. Large mammalian herbivores affect arthropod food webs via changes in vegetation characteristics and microclimate. J. Ecol. 111, 2077–2089 (2023).

    CAS  Google Scholar 

  83. Subalusky, A. L. & Post, D. M. Context dependency of animal resource subsidies. Biol. Rev. 94, 517–538 (2018).

    PubMed  Google Scholar 

  84. Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    CAS  Google Scholar 

  85. Stoler, A. B., Golembieski, M. N., Stephens, J. P. & Raffel, T. R. Differential consumption and assimilation of leaf litter by wetland herbivores: alternative pathways for decomposition and trophic transfer. Freshw. Sci. 35, 178–187 (2016).

    Google Scholar 

  86. Cramp, S. & Brooks, D. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic Vol. VI: Warblers (Oxford Univ. Press, 1992).

  87. García‐Palacios, P. et al. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct. Ecol. 30, 819–829 (2015).

    Google Scholar 

  88. García-Palacios, P., Handa, I. T. & Hättenschwiler, S. in The Ecology of Plant Litter Decomposition in Stream Ecosystems (eds Swan, C. M. et al.) (Springer, 2021) pp 101–126.

  89. Graça, M. A. S. et al. A conceptual model of litter breakdown in low order streams. Int. Rev. Hydrobiol. 100, 1–12 (2015).

    Google Scholar 

  90. Boyero, L. et al. Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nat. Commun. 12, 3700 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, X. et al. Cellulose dominantly affects soil fauna in the decomposition of forest litter: a meta-analysis. Geoderma 378, 114620 (2020).

    ADS  CAS  Google Scholar 

  92. Voysey, M. D., de Bruyn, P. J. N. & Davies, A. B. Are hippos Africa’s most influential megaherbivore? A review of ecosystem engineering by the semi‐aquatic common hippopotamus. Biol. Rev. 98, 1509–1529 (2023).

    PubMed  Google Scholar 

  93. Berzaghi, F., Bretagnolle, F., Durand-Bessart, C. & Blake, S. Megaherbivores modify forest structure and increase carbon stocks through multiple pathways. Proc. Natl Acad. Sci. USA 120, e2201832120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bokhorst, S. & Wardle, D. A. Microclimate within litter bags of different mesh size: implications for the ‘arthropod effect’ on litter decomposition. Soil Biol. Biochem. 58, 147–152 (2013).

    CAS  Google Scholar 

  95. Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol. Rev. 84, 375–389 (2009).

    PubMed  Google Scholar 

  96. Apostolaki, E. T., Marbà, N., Holmer, M. & Karakassis, I. Fish farming impact on decomposition of Posidonia oceanica litter. J. Exp. Mar. Biol. Ecol. 369, 58–64 (2009).

    Google Scholar 

  97. Beard, K. H., Eschtruth, A. K., Vogt, K. A., Vogt, D. J. & Scatena, F. N. The effects of the frog Eleutherodactylus coqui on invertebrates and ecosystem processes at two scales in the Luquillo Experimental Forest, Puerto Rico. J. Trop. Ecol. 19, 607–617 (2003).

    Google Scholar 

  98. Biondini, M. E., Patton, B. D. & Nyren, P. E. Grazing intensity and ecosystem processes in a northern mixed‐grass prairie, USA. Ecol. Appl. 8, 469–479 (1998).

    Google Scholar 

  99. Bretherton, W. D., Kominoski, J. S., Fischer, D. G. & LeRoy, C. J. Salmon carcasses alter leaf litter species diversity effects on in-stream decomposition. Can. J. Fish. Aquat. Sci. 68, 1495–1506 (2011).

    Google Scholar 

  100. Buria, L., Albarino, R., Villanueva, D. V., Modenutti, B. & Balseiro, E. Does predation by the introduced rainbow trout cascade down to detritus and algae in a forested small stream in Patagonia? Hydrobiologia 651, 161–172 (2010).

    Google Scholar 

  101. Campos, H., Boeing, W. J. & Throop, H. L. Decaying woodrat (Neotoma spp.) middens increase soil resources and accelerate decomposition of contemporary litter. J. Arid. Environ. 171, 104007 (2019).

    ADS  Google Scholar 

  102. Carrera, A. L., Bertiller, M. B. & Larreguy, C. Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant Soil 311, 39–50 (2008).

    CAS  Google Scholar 

  103. Casals, P., Garcia-Pausas, J., Montané, F., Romanyà, J. & Rovira, P. Root decomposition in grazed and abandoned dry Mediterranean dehesa and mesic mountain grasslands estimated by standard labelled roots. Agric. Ecosyst. Environ. 139, 759–765 (2010).

    Google Scholar 

  104. Chollet, S., Maillard, M., Schorghuber, J., Grayston, S. J. & Martin, J. L. Deer slow down litter decomposition by reducing litter quality in a temperate forest. Ecology 102, e03235 (2021).

    PubMed  Google Scholar 

  105. Chuan, X., Carlyle, C. N., Bork, E. W., Chang, S. X. & Hewins, D. B. Long-term grazing accelerated litter decomposition in northern temperate grasslands. Ecosystems 21, 1321–1334 (2018).

    Google Scholar 

  106. Connelly, S. et al. Do tadpoles affect leaf decomposition in neotropical streams? Freshw. Biol. 56, 1863–1875 (2011).

    Google Scholar 

  107. Denmead, L. H. et al. The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations. Ecology 98, 1945–1956 (2017).

    PubMed  Google Scholar 

  108. Eldridge, D. J. & Koen, T. B. Temporal changes in soil function in a wooded dryland following simulated disturbance by a vertebrate engineer. Catena 200, 105166 (2021).

    CAS  Google Scholar 

  109. Fivez, L., Vicca, S., Janssens, I. A. & Meire, P. Western palaearctic breeding geese can alter carbon cycling in their winter habitat. Ecosphere 5, 1–20 (2014).

    Google Scholar 

  110. Fornara, D. & Du Toit, J. T. Browsing-induced effects on leaf litter quality and decomposition in a southern African savanna. Ecosystems 11, 238–249 (2008).

    CAS  Google Scholar 

  111. Garibaldi, L. A., Semmartin, M. & Chaneton, E. J. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia 151, 650–662 (2007).

    ADS  PubMed  Google Scholar 

  112. Giese, M. et al. Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland. Appl. Soil Ecol. 41, 8–18 (2009).

    Google Scholar 

  113. Hickerson, C.-A. M., Anthony, C. D. & Walton, B. M. Eastern red-backed salamanders regulate top-down effects in a temperate forest-floor community. Herpetologica 73, 180–189 (2017).

    Google Scholar 

  114. Hofstede, R. G. The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant Soil 173, 111–132 (1995).

    CAS  Google Scholar 

  115. Homyack, J. A., Sucre, E. B., Haas, C. A. & Fox, T. R. Does Plethodon cinereus affect leaf litter decomposition and invertebrate abundances in mixed oak forest? J. Herpetol. 44, 447–456 (2010).

    Google Scholar 

  116. Huang, C. Y., Wang, C. P. & Hou, P.-C. L. Toads (Bufo bankorensis) influence litter chemistry but not litter invertebrates and litter decomposition rates in a subtropical forest of Taiwan. J. Trop. Ecol. 23, 161–168 (2007).

    CAS  Google Scholar 

  117. Huang, L. Effects of Bird Droppings on Litter Decomposition and Soil Nitrogen Mineralization in Sub-tropical Evergreen Broad-leaved Forests. MSc thesis, Jiangxi Agricultural Univ. (2016).

  118. Irons, J. G. III, Bryant, J. P. & Oswood, M. W. Effects of moose browsing on decomposition rates of birch leaf litter in a subarctic stream. Can. J. Fish. Aquat. Sci. 48, 442–444 (1991).

    Google Scholar 

  119. Kasahara, M., Fujii, S., Tanikawa, T. & Mori, A. S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. For. Res. 135, 849–856 (2016).

    Google Scholar 

  120. Katsumata, S., Hobara, S., Osono, T. & Takeda, H. Mass, nitrogen content, and decomposition of woody debris in forest stands affected by excreta deposited in nesting colonies of great cormorant. Ecol. Res. 30, 555–561 (2015).

    CAS  Google Scholar 

  121. Lamperty, T., Zhu, K., Poulsen, J. R. & Dunham, A. E. Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest. Biol. Conserv. 241, 108329 (2020).

    Google Scholar 

  122. Landeiro, V. L., Hamada, N. & Melo, A. S. Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian ‘terra firme’ streams. Fundam. Appl. Limnol. 172, 49 (2008).

    Google Scholar 

  123. Lee, G. M., Kim, H. T. & Kim, J. G. Effects of wintering waterfowl’s feces on nutrient dynamics of paddy fields and rice growth. J. Ecol. Environ. 35, 291–299 (2012).

    CAS  Google Scholar 

  124. LeRoy, C. J. et al. Salmon carcasses influence genetic linkages between forests and streams. Can. J. Fish. Aquat. Sci. 73, 910–920 (2016).

    Google Scholar 

  125. Li, X. et al. A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Funct. Ecol. 35, 1822–1832 (2021).

    CAS  Google Scholar 

  126. Li, Y. et al. Grazing directly or indirectly affect shoot and root litter decomposition in different decomposition stage by changing soil properties. Catena 209, 105803 (2022).

    CAS  Google Scholar 

  127. Liang, D., Lamb, E. G. & Zhang, S. Yak dung deposition affects litter mixing effects on mass loss in Tibetan alpine grassland. Rangeland Ecol. Manage. 72, 405–410 (2019).

    Google Scholar 

  128. Liang, D., Niu, K. & Zhang, S. Interacting effects of yak dung deposition and litter quality on litter mass loss and nitrogen dynamics in Tibetan alpine grassland. Grass Forage Sci. 73, 123–131 (2018).

    CAS  Google Scholar 

  129. Ling, W. The Effects of Two Kinds of Animals on Aquatic Plant Decomposition. MSc thesis, Nanjing Univ. of Information Science and Technology (2016).

  130. Fivez, L. Biogeochemical Cycling in Wetlands: Goose Influences. PhD thesis, Univ. of Antwerp (2014)

  131. Luo, Y. et al. Grazing exclusion altered the effect of plant root diameter on decomposition rates in a semiarid grassland ecosystem, northeastern China. Ecol. Res. 35, 405–415 (2020).

    Google Scholar 

  132. Medeiros, G. G. et al. Effect of vertebrate exclusion on leaf litter decomposition in the coastal Atlantic forest of southeast Brazil. Trop. Ecol. 63, 151–154 (2021).

    Google Scholar 

  133. Shan, Y. M. Influence of Grazing Intensities and Management Regimes on Soil N Mineralization and Litter Decomposition in Inner Mongolia Typical Steppe. PhD thesis, Inner Mongolia Agricultural Univ. (2011).

  134. Naeem, I., Wu, X., Asif, T., Wang, L. & Wang, D. Livestock diversification implicitly affects litter decomposition depending on altered soil properties and plant litter quality in a meadow steppe. Plant Soil 473, 49–62 (2021).

    Google Scholar 

  135. Namba, T. & Ohdachi, S. D. Top-down cascade effects of the long-clawed shrew (Sorex unguiculatus) on the soil invertebrate community in a cool-temperate forest. Mammal Stud. 41, 119–130 (2016).

    Google Scholar 

  136. Olofsson, J. & Oksanen, L. Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos 96, 507–515 (2002).

    ADS  Google Scholar 

  137. Piazza, M. V., Oñatibia, G. R., Aguiar, M. R. & Chaneton, E. J. Long-term impact of domestic ungulates versus the local controls of the litter decomposition process in arid steppes. Plant Soil 467, 483–497 (2021).

    CAS  Google Scholar 

  138. Zhang, Q. J. et al. Effects of herbivorous overwintering migratory birds’ droppings on the decomposition of Carex cinerascens Kükenth and CNP release in Lake Poyang wetland. J. Lake Sci. 2019, 814–824 (2019).

    Google Scholar 

  139. Ye, R. H. et al. Effects of nitrogen and water addition on litter decomposition in desert grassland under different grazing intensities. Acta Ecol. Sin. 40, 2775–2783 (2020).

    CAS  Google Scholar 

  140. Schmidt, K., Pearson, R. G., Alford, R. A. & Puschendorf, R. Tadpole species have variable roles in litter breakdown, sediment removal, and nutrient cycling in a tropical stream. Freshw. Sci. 38, 103–112 (2019).

    Google Scholar 

  141. Semmartin, M., Garibaldi, L. A. & Chaneton, E. J. Grazing history effects on above-and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 303, 177–189 (2008).

    CAS  Google Scholar 

  142. Shariff, A. R., Biondini, M. E. & Grygiel, C. E. Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Rangel. Ecol. Manag. 47, 444–449 (1994).

    Google Scholar 

  143. Sin, H., Beard, K. H. & Pitt, W. C. An invasive frog, Eleutherodactylus coqui, increases new leaf production and leaf litter decomposition rates through nutrient cycling in Hawaii. Biol. Invasions 10, 335–345 (2008).

    Google Scholar 

  144. Sjögersten, S., van der Wal, R. & Woodin, S. J. Impacts of grazing and climate warming on C pools and decomposition rates in Arctic environments. Ecosyst. 15, 349–362 (2012).

    Google Scholar 

  145. Smit, A., Kooijman, A. & Sevink, J. Impact of grazing on litter decomposition and nutrient availability in a grass-encroached Scots pine forest. For. Ecol. Manag. 158, 117–126 (2002).

    Google Scholar 

  146. Song, X. et al. Sheep grazing and local community diversity interact to control litter decomposition of dominant species in grassland ecosystem. Soil Biol. Biochem. 115, 364–370 (2017).

    CAS  Google Scholar 

  147. Stark, S., Wardle, D. A., Ohtonen, R., Helle, T. & Yeates, G. W. The effect of reindeer grazing on decomposition, mineralization and soil biota in a dry oligotrophic Scots pine forest. Oikos 90, 301–310 (2000).

    ADS  Google Scholar 

  148. Sun, Y., He, X. Z., Hou, F., Wang, Z. & Chang, S. Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow. Biogeosciences 15, 4233–4243 (2018).

    ADS  CAS  Google Scholar 

  149. Tsai, C. W., Shieh, S. H., Huang, Y. H. & Lai, M. Y. Effects of fish predators and litter pack size on leaf breakdown in a subtropical stream. Hydrobiologia 818, 57–70 (2018).

    Google Scholar 

  150. Ulloa, E., Anderson, C. B., Ardón, M., Murcia, S. & Valenzuela, A. E. Organic matter characterization and decomposition dynamics in sub-Antarctic streams impacted by invasive beavers.Lat. Am. J. Aquat. Res. 40, 881–892 (2012).

    Google Scholar 

  151. Wach, E. & Chambers, R. M. Top-down effect of fish predation in Virginia headwater streams. Northeast. Nat. 14, 461–470 (2007).

    Google Scholar 

  152. Walton, B. M. & Steckler, S. Contrasting effects of salamanders on forest-floor macro- and mesofauna in laboratory microcosms. Pedobiologia 49, 51–60 (2005).

    Google Scholar 

  153. Wang, Y. et al. Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Appl. Soil Ecol. 96, 183–191 (2015).

    Google Scholar 

  154. Wang, Y. et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: soil moisture, not home-field advantage, plays a dominant role. Agric. Ecosyst. Environ. 303, 107119 (2020).

    CAS  Google Scholar 

  155. Wang, Z. et al. Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe. Sci. Rep. 8, 9089 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  156. Wardle, D. A., Bellingham, P. J., Bonner, K. I. & Mulder, C. P. Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird‐dominated islands. Ecology 90, 452–464 (2009).

    PubMed  Google Scholar 

  157. Wei, C. Responses of Plant Litter Decomposition to Grazing and Enclosure Management in Semiarid Grassland Ecosystem. MSc thesis, Ningxia Univ. (2021).

  158. Wright, D. G., van der Wal, R., Wanless, S. & Bardgett, R. D. The influence of seabird nutrient enrichment and grazing on the structure and function of island soil food webs. Soil Biol. Biochem. 42, 592–600 (2010).

    CAS  Google Scholar 

  159. Wyman, R. L. Experimental assessment of salamanders as predators of detrital food webs: effects on invertebrates, decomposition and the carbon cycle. Biodivers. Conserv. 7, 641–650 (1998).

    Google Scholar 

  160. Xiang, H., Zhang, Y., Atkinson, D. & Sekar, R. Anthropogenic carrion subsidy and herbicide glyphosate depressed leaf-litter breakdown: effects on environmental health in streams. Front. Environ. Sci. 10, 806340 (2022).

    Google Scholar 

  161. Yanai, S. & Kochi, K. Effects of salmon carcasses on experimental stream ecosystems in Hokkaido, Japan. Ecol. Res. 20, 471–480 (2005).

    Google Scholar 

  162. Wang, Y. N. The Decomposition of Livestock Dung and Dominant Plant Litter in a Typical Steppe of Inner Mongolia. MSc thesis, Inner Mongolia Univ. (2020).

  163. Yang, C. et al. Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai–Tibet Plateau. Plant Soil 444, 239–250 (2019).

    CAS  Google Scholar 

  164. Gao, Y. H., Chen, H., Luo, P., Wu, N. & Wang, G. X. Effects of grazing intensity on decompositions of two dominant plant species litters in alpine meadow on the northwestern Sichuan. Ecol. Sci. 2007, 193–198 (2007).

    Google Scholar 

  165. Yuan, X. et al. Litter decomposition in fenced and grazed grasslands: a test of the home-field advantage hypothesis. Geoderma 354, 113876 (2019).

    ADS  CAS  Google Scholar 

  166. Zhang, Y. Effects of Summer and Winter Rotational Grazing of Tibetan Sheep on Plant, Soil and Livestock of Alpine Ecosystem. PhD thesis, Lanzhou Univ. (2016).

  167. Wang, Z. N. The Mechanisms by Leymus chinensis Litter Responding to Large Herbivores Grazing and Habitats on Grasslands. PhD thesis, Northeast Normal Univ. (2018).

  168. Zhou, Y. et al. Additive effects of warming and grazing on fine-root decomposition and loss of nutrients in an alpine meadow. J. Plant Ecol. 15, 1273–1284 (2022).

    Google Scholar 

  169. Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).

    PubMed  Google Scholar 

  170. Nakagawa, S. et al. A robust and readily implementable method for the meta-analysis of response ratios with and without missing standard deviations. Ecol. Lett. 26, 232–244 (2023).

    PubMed  Google Scholar 

  171. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  172. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  173. Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. Nakagawa, S., Yang, Y., Macartney, E. L., Spake, R. & Lagisz, M. Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences. Environ. Evid. 12, 8 (2023).

    Google Scholar 

  175. Rosenthal, R. Meta-analysis Procedures for Social Research (Sage, 1991).

  176. Tuo, B. et al. Meta-analysis reveals that vertebrates enhance plant litter decomposition at the global scale. figshare https://doi.org/10.6084/m9.figshare.23320955 (2023).

  177. Swift, M. J., Heal, O. W., Anderson, J. M. & Anderson, J. Decomposition in Terrestrial Ecosystems (Univ. of California Press, 1979).

Download references

Acknowledgements

We thank those who contributed to original publications. E.R.Y was supported by the State Key Program of the National Natural Science Foundation of China (grant no. 32030068). C.G. was supported by the Humboldt Research Fellowship for Postdocs of Germany and National Natural Science Foundation of China (grant no. 32101275). B.T. was funded by the China Scholarship Council (grant no. 2019061401117). We thank J. Hu for technical support.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and J.H.C.C designed this study. B.T. collected and analysed data, and wrote the manuscript. C.G. helped improve the conceptual diagram. P.G.-P, C.G., E.Y., M.P.B. and J.H.C.C. provided valuable inputs to the manuscript.

Corresponding author

Correspondence to Chao Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jake Bicknell, David Eldridge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Supplementary Text 1, and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Data 1

The data used to reproduce the results of Supplementary Fig. 2 and Supplementary Table 1.

Source data

Source Data Figs. 1–5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuo, B., García-Palacios, P., Guo, C. et al. Meta-analysis reveals that vertebrates enhance plant litter decomposition at the global scale. Nat Ecol Evol 8, 411–422 (2024). https://doi.org/10.1038/s41559-023-02292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02292-6

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology