Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins

Abstract

Previous scientific consensus saw human evolution as defined by adaptive differences (behavioural and/or biological) and the emergence of Homo sapiens as the ultimate replacement of non-modern groups by a modern, adaptively more competitive group. However, recent research has shown that the process underlying our origins was considerably more complex. While archaeological and fossil evidence suggests that behavioural complexity may not be confined to the modern human lineage, recent palaeogenomic work shows that gene flow between distinct lineages (for example, Neanderthals, Denisovans, early H. sapiens) occurred repeatedly in the late Pleistocene, probably contributing elements to our genetic make-up that might have been crucial to our success as a diverse, adaptable species. Following these advances, the prevailing human origins model has shifted from one of near-complete replacement to a more nuanced view of partial replacement with considerable reticulation. Here we provide a brief introduction to the current genetic evidence for hybridization among hominins, its prevalence in, and effects on, comparative mammal groups, and especially how it manifests in the skull. We then explore the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with our current genetic and comparative data. We are especially interested in understanding the degree to which skeletal data can reflect admixture. Our findings indicate some correspondence between these different lines of evidence, flag individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially. We urge further studies of the phenotype to expand our ability to detect the ways in which migration, interaction and genetic exchange have shaped the human past, beyond what is currently visible with the lens of ancient DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principal components analyses of mouse skulls.
Fig. 2: Localities for Pleistocene fossil hominin specimens used in the analyses.
Fig. 3: Hemimandible analysis.
Fig. 4: Posterior cranial (midsagittal) profile analysis.
Fig. 5: Face analysis.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the Zenodo open source online repository at https://doi.org/10.5281/zenodo.6846628.

References

  1. Ackermann, R. et al. Hybridization in human evolution: insights from other organisms. Evol. Anthropol. 28, 189–209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).

    Article  PubMed  Google Scholar 

  3. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 5, 820–825 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Villanea, F. A. & Schraiber, J. G. Multiple episodes of interbreeding between Neanderthal and modern humans. Nat. Ecol. Evol. 3, 39–44 (2019).

    Article  PubMed  Google Scholar 

  9. Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prufer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  PubMed  Google Scholar 

  14. Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science https://doi.org/10.1126/science.aam9695 (2017).

  15. Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Durvasula, A. & Sankararaman, S. Recovering signals of ghost archaic introgression in African populations. Sci. Adv. 6, eaax5097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA 108, 15123–15128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harvati, K. et al. The later stone age Calvaria from Iwo Eleru, Nigeria: morphology and chronology. PLoS ONE 6, e24024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lachance, J. et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 150, 457–469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, F. H., Ahern, J. C. M., Janković, I. & Karavanić, I. The Assimilation Model of modern human origins in light of current genetic and genomic knowledge. Quat. Int. 450, 126–136 (2017).

    Article  Google Scholar 

  23. Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, Y., Ding, Q., He, Y., Xu, S. & Jin, L. Reintroduction of a homocysteine level-associated allele into East asians by Neanderthal introgression. Mol. Biol. Evol. 32, 3108–3113 (2015).

    CAS  PubMed  Google Scholar 

  25. Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin, Y. L., Pavlidis, P., Karakoc, E., Ajay, J. & Gokcumen, O. The evolution and functional impact of human deletion variants shared with archaic hominin genomes. Mol. Biol. Evol. 32, 1008–1019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schlebusch, C. M. et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338, 374–379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Skov, L. et al. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature https://doi.org/10.1038/s41586-020-2225-9 (2020).

  33. Mozzi, A. et al. Distinct selective forces and Neanderthal introgression shaped genetic diversity at genes involved in neurodevelopmental disorders. Sci. Rep. 7, 6116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gregory, M. D. et al. Neanderthal-derived genetic variation shapes modern human cranium and brain. Sci. Rep. 7, 6308 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gunz, P. et al. Neandertal introgression sheds light on modern human endocranial globularity. Curr. Biol. 29, 120–127.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zeberg, H. & Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl Acad. Sci. USA 118, e2026309118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gokcumen, O. Archaic hominin introgression into modern human genomes. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.23951 (2019).

  39. Arnold, M. L. Evolution Through Genetic Exchange (Oxford Univ. Press, 2006).

  40. Jolly, C. J. A proper study for mankind: analogies from the Papionin monkeys and their implications for human evolution. Am. J. Phys. Anthropol. 116, 177–204 (2001).

    Article  Google Scholar 

  41. Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    Article  PubMed  Google Scholar 

  42. Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).

    Article  PubMed  Google Scholar 

  43. Ackermann, R., Brink, J., Vrahimis, S. & de Klerk, B. Hybrid wildebeest (Artiodactyla: Bovidae) provide further evidence for shared signatures of admixture in mammalian crania. S. Afr. J. Sci. 106, 1–4 (2010).

    Article  Google Scholar 

  44. Baranov, A. S. & Zakharov, V. M. Developmental stability in hybrids of European bison, Bison bonasus, and domestic cattle. Acta Theriol. 42, 87–90 (1997).

    Article  Google Scholar 

  45. Brink, J. S. The Evolution of the Black Wildebeest, Connochaetes Gnou, and Modern Large Mammal Faunas in Central Southern Africa. PhD thesis, Univ. Stellenbosch (2005).

  46. Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kumar, V. et al. The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Figueiró, H. V. et al. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci. Adv. https://doi.org/10.1126/sciadv.1700299 (2017).

  49. Li, G., Davis, B. W., Eizirik, E. & Murphy, W. J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 26, 1–11 (2016).

  50. Benson, J. F., Patterson, B. R. & Wheeldon, T. J. Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in a Canis hybrid zone. Mol. Ecol. 21, 5934–5954 (2012).

    Article  PubMed  Google Scholar 

  51. Khosravi, R., Rezaei, H. R. & Kaboli, M. Detecting hybridization between Iranian wild wolf (Canis lupus pallipes) and free-ranging domestic dog (Canis familiaris) by analysis of microsatellite markers. Zool. Sci. 30, 27–34 (2013).

    Article  Google Scholar 

  52. Mahan, B. R., Gipson, P. S. & Case, R. M. Characteristics and distribution of coyote X dog hybrids collected in Nebraska. Am. Midl. Nat. 100, 408–415 (1978).

    Article  Google Scholar 

  53. Monzon, J., Kays, R. & Dykhuizen, D. E. Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs. Mol. Ecol. 23, 182–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Vila, C. et al. Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids. Heredity 90, 17–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Pastorini, J., Zaramody, A., Curtis, D. J., Nievergelt, C. M. & Mundy, N. I. Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs. BMC Evol. Biol. 9, 32 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wyner, Y. M., Johnson, S. E., Stumpf, R. M. & Desalle, R. Genetic assessment of a white-collared×red-fronted lemur hybrid zone at Andringitra, Madagascar. Am. J. Primatol. 57, 51–66 (2002).

    Article  PubMed  Google Scholar 

  57. Aguiar, L. M. et al. Sympatry between Alouatta caraya and Alouatta clamitans and the rediscovery of free-ranging potential hybrids in Southern Brazil. Primates 48, 245–248 (2007).

    Article  PubMed  Google Scholar 

  58. Cortés-Ortiz, L., Agostini, I., Aguiar, L. M., Kelaita, M., Silva, F. E., & Bicca-Marques, J. C. (2015). Hybridization in howler monkeys: current understanding and future directions. In Howler Monkeys: Behaviour, Ecology and Conservation (eds Kowalewski, M. M. et al.) 107–131 (Springer-Verlag, New York, 2015).

  59. Malukiewicz, J. et al. Hybridization effects and genetic diversity of the common and black-tufted marmoset (Callithrix jacchus and Callithrix penicillata) mitochondrial control region. Am. J. Phys. Anthropol. 155, 522–536 (2014).

    Article  PubMed  Google Scholar 

  60. Peres, C. A., Patton, J. L., Nazareth, F. & da Silva, M. Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatol. 67, 113–124 (1996).

    Article  CAS  Google Scholar 

  61. Rossan, R. N. & Baerg, D. C. Laboratory and feral hybridization of Ateles geoffroyi panamensis Kellogg and Goldman 1944 and A. fusciceps robustus Allen 1914 in Panama. Primates 18, 235–237 (1977).

    Article  Google Scholar 

  62. Detwiler, K. M., Burrell, A. S. & Jolly, C. J. Conservation implications of hybridization in African cercopithecine monkeys. Int. J. Primatol. 26, 661–684 (2005).

    Article  Google Scholar 

  63. Fooden, J. Rhesus and crab-eating macaques: intergradation in Thailand. Science 143, 363–364 (1964).

    Article  CAS  PubMed  Google Scholar 

  64. Schillaci, M. A., Froehlich, J. W., Supriatna, J. & Jones-Engel, L. The effects of hybridization on growth allometry and craniofacial form in Sulawesi macaques. J. Human Evol. 49, 335–369 (2005).

    Article  Google Scholar 

  65. Wildman, D. E. et al. Mitochondrial evidence for the origin of hamadryas baboons. Mol. Phylogenet. Evol. 32, 287–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Zinner, D., Groeneveld, L. F., Keller, C. & Roos, C. Mitochondrial phylogeography of baboons (Papio spp.): indication for introgressive hybridization? BMC Evol. Biol. 9, 83 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harvati, K., Frost, S. R. & McNulty, K. P. Neanderthal taxonomy reconsidered: implications of 3D primate models of intra- and interspecific differences. Proc. Natl Acad. Sci. USA 101, 1147–1152 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jolly, C. J. in Species, Species Concepts and Primate Evolution (eds Kimbel, W. H. & Martin, L. B.) 67–107 (Springer, 1993).

  69. Brockelman, W. Y. & Srikosamatara, S. Maintenance and evolution of social structure in gibbons. In The Lesser Apes: Evolutionary and Behavioural Biology (eds Preuschoft, H. et al.) 298–323 (Edinburgh University Press, Edinburgh, 1984).

  70. Marshall, J. & Sugardjito, J. in Comparative Primate Biology, 1. Systematics, Evolution and Anatomy (eds Swindler, D. R. & Erwin, J.) 137–185 (Liss, 1986).

  71. Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature https://doi.org/10.1038/nature12228 (2013).

  72. de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).

    Article  PubMed  Google Scholar 

  74. Nye, J. et al. Selection in the introgressed regions of the chimpanzee genome. Genome Biol. Evol. 10, 1132–1138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuhlwilm, M. The evolution of FOXP2 in the light of admixture. Curr. Opin. Behav. Sci. 21, 120–126 (2018).

    Article  Google Scholar 

  78. Kuhlwilm, M., Han, S., Sousa, V. C., Excoffier, L. & Marques-Bonet, T. Ancient admixture from an extinct ape lineage into bonobos. Nat. Ecol. Evol. 3, 957–965 (2019).

    Article  PubMed  Google Scholar 

  79. Duarte, C. et al. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc. Nat Acad. Sci. USA 96, 7604–7609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wolpoff, M., Hawks, J., Frayer, D. & Hunley, K. Modern human ancestry at the peripheries: a test of the replacement theory. Science 291, 293–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Soficaru, A., Petrea, C., Dobos, A. & Trinkaus, E. Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proc. Natl Acad. Sci. USA 103, 17196–17201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rougier, H. et al. Peştera cu Oase 2 and the cranial morphology of early modern Europeans. Proc. Natl Acad. Sci. USA 104, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trinkaus, E., Constantin, S. & Zilhão, J. Life and Death at the Pestera cu Oase. A Setting for Modern Human Emergence in Europe (Oxford Univ. Press, 2013).

  84. Ackermann, R. R. Phenotypic traits of primate hybrids: recognizing admixture in the fossil record. Evol. Anthropol. 19, 258–270 (2010).

    Article  Google Scholar 

  85. Smith, F., Lacy, K. & Caldwell, S. Morphological evidence for modern human influences in late central European Neandertals. Anthropologie 53, 61–76 (2015).

    Google Scholar 

  86. Smith, F. H., Hutchinson, V. T. & Janković, I. in African Genesis: Perspectives on Hominin Evolution (eds Reynolds, S. C. & Gallagher, A.) 365–-393 (Cambridge Univ. Press, 2012).

  87. Smith, F. H., Falsetti, A. B., & Simmons, T. in Man and Environment in the Paleolithic (ed. Ullrich, H.) 167–179 (ERAUL, 1995).

  88. Ahern, J. C., Janković, I., Voisin, J. & Smith, F. H. in Origins of Modern Humans: Biology Reconsidered (eds Smith, F. H. & Ahern, J. C.) 151–222 (Wiley-Blackwell, 2013).

  89. Cartmill, M. & Smith, F. H. The Human Lineage (John Wiley & Sons, 2009).

  90. Condemi, S. et al. Possible interbreeding in late Italian Neanderthals? New data from the Mezzena Jaw (Monti Lessini, Verona, Italy). PLoS ONE 8, e59781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harvati, K., Gunz, P. & Grigorescu, D. Cioclovina (Romania): affinities of an early modern European. J. Hum. Evol. 53, 732–746 (2007).

    Article  PubMed  Google Scholar 

  92. Stringer, C. What makes a modern human. Nature 485, 33–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Tattersall, I. & Schwartz, J. H. Hominids and hybrids: the place of Neanderthals in human evolution. Proc. Natl Acad. Sci. USA 96, 7117–7119 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klein, R. The Human Career 3rd edn (Univ. Chicago Press, 2009).

  95. Klein, R. G. Paleoanthropology. Whither the Neanderthals? Science 299, 1525–1527 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Ackermann, R. R., Rogers, J. & Cheverud, J. Identifying the morphological signatures of hybridization in primate and human evolution. J. Hum. Evol. 51, 632–645 (2006).

    Article  PubMed  Google Scholar 

  97. Ackermann, R. R., Schroeder, L., Rogers, J. & Cheverud, J. Further evidence for phenotypic signatures of hybridization in descendant baboon populations. J. Hum. Evol. 76, 54–62 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Warren, K. A. et al. Craniomandibular form and body size variation of first generation mouse hybrids: a model for hominin hybridization. J. Hum. Evol. 116, 57–74 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Harvati, K. & Roksandic, M. in Paleoanthropology of the Balkans and Anatolia: Human Evolution and its Context (eds Harvati, K. & Roksandic, M.) 51–68 (Springer, 2016).

  100. Ackermann, R. R. in Tinkering: the Microevolution of Development Symposium 284 (ed. Novartis Foundation) 262–279 (Wiley, 2007).

  101. Goodwin, T. Supernumerary teeth in Pleistocene, recent, and hybrid individuals of the Spermophilus richardsonii Complex (Sciuridae). J. Mammal. 79, 1161–1169 (1998).

    Article  Google Scholar 

  102. Zdjelar, N., Nagendran, L., Kendall, C., Ackermann, R. R. & Schroeder, L. The hybrid skull of the eastern coyote (Canis latrans var.): nonmetric traits and craniomandibular shape. J. Morphol. 282, 1745–1764 (2021).

    Article  PubMed  Google Scholar 

  103. Eichel, K. & Ackermann, R. R. Variation in the nasal cavity of baboon hybrids with implications for late Pleistocene hominins. J. Hum. Evol. 94, 134–145 (2016).

    Article  PubMed  Google Scholar 

  104. Rieseberg, L., Archer, M. & Wayne, R. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).

    Article  PubMed  Google Scholar 

  105. Leamy, L. Morphometric studies in inbred and hybrid house mice. I. Patterns in the mean values. J. Hered. 73, 171–176 (1982).

    Article  CAS  PubMed  Google Scholar 

  106. Leamy, L. Morphometric studies in inbred and hybrid mouse. VII. heterosis in fluctuating asymmetry at different ages. Acta Zoologica Fennica 191, 111–120 (1992).

    Google Scholar 

  107. Leamy, L. & Thorpe, R. Morphometric studies in inbred and hybrid house mice. Heterosis, homeostasis and heritability of size and shape. Bio. J. Linn. Soc. Lond. 22, 233–241 (1984).

    Article  Google Scholar 

  108. Percival, C. J. et al. Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross. J. Anat. 228, 96–112 (2016).

    Article  PubMed  Google Scholar 

  109. Thorpe, R. & Leamy, L. Morphometric studies in inbred and hybrid house mice (Mus sp.): multivariate analysis of size and shape. J. Zool. 199, 421–432 (1983).

    Article  Google Scholar 

  110. Warren, K. A. Using the Craniomandibular Morphology of Hybrid Mice to Better Understand Hybrid Morphologies in the Hominin Fossil Record. PhD thesis, Univ. Cape Town (2017).

  111. Cheverud, J. M., Jacobs, S. C. & Moore, A. J. Genetic differences among subspecies of the saddle-back tamarin (Saguinus fuscicollis):evidence from hybrids. A. J. Primatol. 31, 23–39 (1993).

    Article  Google Scholar 

  112. Carmon, J. L. Heterosis, combining ability, and maternal effects in mice. J. Genet. 58, 225–231 (1963).

    Article  Google Scholar 

  113. Kohn, L. A. P., Langton, L. B. & Cheverud, J. M. Subspecific genetic differences in the saddle-back tamarin (Saguinus fuscicollis) postcranial skeleton. Am. J. Primatol. 54, 41–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kurnianto, E., Shinjo, A., Suga, D. & Uema, N. Diallel cross analysis of body weight in subspecies of mice. Exp. Anim. 48, 277–283 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Buck, L. T. et al. Effects of admixture on pelvic morphology: a macaque model. J. Hum. Evol. 159, 1030–1049 (2021).

    Article  Google Scholar 

  116. Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).

    Article  PubMed  Google Scholar 

  117. Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Tryon, C. A. et al. Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya. Proc. Natl Acad. Sci. USA 112, 2682–2687 (2015).

  119. Nicholson, E. & Harvati, K. Quantitative analysis of human mandibular shape using three-dimensional geometric morphometrics. Am. J. Phys. Anthropol. 131, 368–383 (2006).

    Article  PubMed  Google Scholar 

  120. Gunz, P. & Harvati, K. The Neanderthal “chignon”: variation, integration, and homology. J. Hum. Evol. 52, 262–274 (2007).

    Article  PubMed  Google Scholar 

  121. Harvati, K., Hublin, J.-J. & Gunz, P. Evolution of middle-late Pleistocene human cranio-facial form: a 3-D approach. J. Hum. Evol. 59, 445–464 (2010).

    Article  PubMed  Google Scholar 

  122. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Trinkaus, E. An abundance of developmental anomalies and abnormalities in Pleistocene people. Proc. Natl Acad. Sci. USA 115, 11941–11946 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 6094–6098 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Scerri, E. M. L. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Siska, V. Human Population History and its Interplay with Natural Selection. PhD thesis, Univ. Cambridge (2018).

  127. Harvati, K. & Weaver, T. D. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A 288, 1225–1233 (2006).

    Article  Google Scholar 

  128. Hubbe, M., Hanihara, T. & Harvati, K. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat. Rec. 292, 1720–1733 (2009).

    Article  Google Scholar 

  129. Noback, M. L. & Harvati, K. The contribution of subsistence to global human cranial variation. J. Hum. Evol. 80, 34–50 (2015).

    Article  PubMed  Google Scholar 

  130. Schmidt, K. L. & Cohn, J. F. Human facial expressions as adaptations: evolutionary questions in facial expression research. Am. J. Phys. Anthropol. 116, 3–24 (2001).

    Article  Google Scholar 

  131. Mellars, P. & French, J. C. Tenfold population increase in Western Europe at the Neandertal-to-modern human transition. Science 333, 623–627 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Franciscus, R. & Vlček, E. in Early Modern Human Evolution in Central Europe: the People of Dolní Vĕstonice and Pavlov (eds Trinkaus, E. & Svoboda, J. A.) 63–152 (Oxford Univ. Press, 2006).

  133. Galway-Witham, J. & Stringer, C. How did Homo sapiens evolve? Science 360, 1296–1298 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Ríos, L. et al. Skeletal anomalies in the Neandertal family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction. Sci. Rep. 9, 1697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dennell, R. W., Martinón-Torres, M. & Bermúdez de Castro, J. M. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quat. Sci. Rev. 30, 1511–1524 (2011).

    Article  Google Scholar 

  136. Charpentier, M. J. E., Widdig, A. & Alberts, S. C. Inbreeding depression in non-human primates: a historical review of methods used and empirical data. Am. J. Primatol. 69, 1370–1386 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. G. Rawlins, R. & J. Kessler, M. Congenital and hereditary anomalies in the rhesus monkeys (Macaca mulatta) of Cayo Santiago. Teratology 28, 169–174 (1983).

  138. Nakamichi, M., Nobuhara, H., Nobuhara, T., Nakahashi, M. & Nigi, H. Birth rate and mortality rate of infants with congenital malformations of the limbs in the Awajishima free-ranging group of Japanese monkeys (Macaca fuscata). Am. J. Primatol. 42, 225–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Chalifoux, L. V. & Elliott, M. W. Congenital anomalies in two neonatal tamarins (Saguinus oedipus and Saguinus fuscicollis). J. Med. Primatol. 15, 29–337 (1986).

    Article  Google Scholar 

  140. van der Valk, T., Díez-del-Molino, D., Marques-Bonet, T., Guschanski, K. & Dalén, L. Historical genomes reveal the genomic consequences of recent population decline in eastern Gorillas. Curr. Biol. 29, 165–170.e6 (2019).

    Article  PubMed  Google Scholar 

  141. Hublin, J. J. The origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Currat, M. & Excoffier, L. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression. Proc. Natl Acad. Sci. USA 108, 15129–15134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. PLoS Genet. 12, e1006340 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. McCoy, R. C., Wakefield, J. & Akey, J. M. Impacts of Neanderthal-introgressed sequences on the landscape of human gene expression. Cell 168, 916–927.e2 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Valladas, H. et al. TL dates for the Neanderthal site of the Amud Cave, Israel. J. Archaeol. Sci. 26, 259–268 (1999).

    Article  Google Scholar 

  146. Bahain, J. J., Sarcia, M. N., Falguères, C. & Yokoyama, Y. Attempt at ESR dating of tooth enamel of French middle Pleistocene sites. Appl. Radiat. Isot. 44, 267–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Grün, R. & Stringer, C. B. ESR dating and the evolution of modern humans. Archaeometry 33, 53–199 (1991).

    Article  Google Scholar 

  148. Schmitz, R. W. et al. The Neandertal type site revisited: interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proc. Natl Acad. Sci. USA 99, 13342–13347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guérin, G. et al. A multi-method luminescence dating of the palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. J. Archaeol. Sci. 58, 47–166 (2015).

    Article  Google Scholar 

  150. Oakley, K., Campbell, B. & Molleson, T. Catalogue of Fossil Hominids Part II: Europe (British Museum (Natural History), London, 1971).

  151. Grün, R. & Stringer, C. B. Electron spin resonance dating and the evolution of modern humans. Archaeometry 33, 153–199 (1991).

    Article  Google Scholar 

  152. Schwarcz, H. P. et al. On the reexamination of Grotta Guattari: uranium-series and electron-spin-resonance dates. Curr. Anthropol. 32, 313–316 (1991).

    Article  Google Scholar 

  153. Rink, W. J., Schwarcz, H. P., Smith, F. H. & Radovĉić, J. ESR ages for Krapina hominids. Nature 378, 24 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Debénath, A. & Jelinek, A. J. Nouvelles fouilles à La Quina (Charente). Résultats préliminaires. 40, (1998).

  155. Vandermeersch, B. & Trinkaus, E. The postcranial remains of the Régourdou 1 Neandertal: the shoulder and arm remains. J. Hum. Evol. 28, 439–476 (1995).

    Article  Google Scholar 

  156. Marra, F. et al. The aggradational successions of the Aniene River Valley in Rome: age constraints to early Neanderthal presence in Europe. PLoS ONE 12, e0170434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Solecki, R. S. Shanidar, the First Flower People (Knopf, 1971).

  158. Devièse, T. et al. Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proc. Natl Acad. Sci. USA 118, e2022466118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Grün, R. & Stringer, C. Tabun revisited: revised ESR chronology and new ESR and U-series analyses of dental material from Tabun C1. J. Hum. Evol. 39, 601–612 (2000).

    Article  PubMed  Google Scholar 

  160. Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    Article  PubMed  Google Scholar 

  161. Michel, V., Delanghe-Sabatier, D., Bard, E. & Barroso Ruiz, C. U-series, ESR and 14C studies of the fossil remains from the Mousterian levels of Zafarraya Cave (Spain): a revised chronology of Neandertal presence. Quat. Geochronol. 15, 20–33 (2013).

    Article  Google Scholar 

  162. Wood, R. E. et al. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proc. Natl Acad. Sci. USA 110, 2781–2786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Haile-Selassie, Y., Asfaw, B. & White, T. D. Hominid cranial remains from upper Pleistocene deposits at Aduma, Middle Awash, Ethiopia. Am. J. Phys. Anthropol. 123, 1–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Grine, F. et al. Late Pleistocene human skull from Hofmeyr. Science 315, 226–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Schwartz, J. H. & Tattersall, I. The Human Fossil Record, Craniodental Morphology of Genus Homo (Africa and Asia) Vol. 2. (Wiley-Liss, 2003).

  166. Wood, B. Wiley-Blackwell Encyclopedia of Human Evolution 1st edn (Wiley-Blackwell, 2011).

  167. Day, M. H., Leakey, M. D. & Magori, C. A new hominid fossil skull (L.H. 18) from the Ngaloba Beds, Laetoli, northern Tanzania. Nature 284, 55–56 (1980).

    Article  CAS  PubMed  Google Scholar 

  168. Leakey, M. D. & Harris, J. M. (eds) Laetoli: A Pliocene Site in Northern Tanzania (Oxford Univ. Press, 1987).

  169. Vidal, C. M. et al. Age of the oldest known Homo sapiens from eastern Africa. Nature 601, 579–583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733–736 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Schild, R. & Wendorf, F. Palaeolithic living sites in upper and middle Egypt: a review article. J. Field Archaeol. 29, 447–461 (2002).

    Article  Google Scholar 

  172. Mellars, P. A., Bricker, H. M., Gowlett, J. A. J. & Hedges, R. E. M. Radiocarbon accelerator dating of French Upper Palaeolithic sites. Curr. Anthropol. 28, 128–133 (1987).

    Article  Google Scholar 

  173. Holt, B. M. & Formicola, V. Hunters of the Ice Age: the biology of Upper Paleolithic people. Am. J. Phys. Anthropol. 137, 70–99 (2008).

    Article  Google Scholar 

  174. Barshay-Szmidt, C. et al. New extensive focused AMS 14C dating of the Middle and Upper Magdalenian of the western Aquitaine/Pyrenean region of France (ca. 19–14 ka cal BP): proposing a new model for its chronological phases and for the timing of occupation. Quat. Int. 414, 62–91 (2016).

    Article  Google Scholar 

  175. Soficaru, A., Petrea, C., Doboş, A. & Trinkaus, E. The human cranium from the Peştera Cioclovina Uscată, Romania: context, age, taphonomy, morphology, and paleopathology. Curr. Anthropol. 48, 611–619 (2007).

    Article  Google Scholar 

  176. Henry-Gambier, D. Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne): nouvelles données sur leur position chronologique et leur attribution culturelle. Bulletins et mémoires de la Société d'Anthropologie de Paris 14, 1–2 (2002).

    Article  Google Scholar 

  177. Trinkaus, E. & Svoboda, J. Early Modern Human Evolution in Central Europe: The People of Dolní Věstonice and Pavlov. (Oxford Univ. Press, 2006).

  178. Formicola, V., Pettitt, P. B. & Del Lucchese, A. A direct AMS radiocarbon date on the Barma Grande 6 Upper Paleolithic skeleton. Curr. Anthropol. 45, 114–118 (2004).

    Article  Google Scholar 

  179. Schwartz, J. H. & Tattersall, I. The Human Fossil Record, Terminology and Craniodental Morphology of Genus I Homo/I (Europe) Vol. 1 (Wiley-Liss, 2002).

  180. Wild, E. M. et al. Direct dating of Early Upper Palaeolithic human remains from Mladeč. Nature 435, 332–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Trinkaus, E. et al. An early modern human from the Peştera cu Oase, Romania. Proc. Natl Acad. Sci. USA 100, 11231–11236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Street, M., Terberger, T. & Orschiedt, J. A critical review of the German Paleolithic hominin record. J. Hum. Evol. 51, 551–579 (2006).

    Article  PubMed  Google Scholar 

  183. Svoboda, J. A. The Upper Paleolithic burial area at Předmostí: ritual and taphonomy. J. Hum. Evol. 54, 15–33 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council (ERC AdG 101019659 (KH)), the German Research Foundation (DFG FOR 2237 ‘Words, Bones, Genes, Tools’ (KH)) and the National Research Foundation of South Africa (Grant No. 117670 (RRA)). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank all curators and institutions that allowed us access to the fossil specimens used in our analyses, E. Lopez for collecting part of the mandibular data used, K. Warren for collecting and analysing the data reproduced in Fig. 1, A. M. Bosman and C. Röding for help with processing the datasets used in Figs. 3 and 4, H. Rathmann and J. Kunze for help with the figures, and C. Posth for important feedback.

Author information

Authors and Affiliations

Authors

Contributions

Both K.H. and R.R.A. conceived and designed the study; KH collected and analysed the coordinate data; RRA compiled data from the literature; and both K.H. and R.R.A. wrote the manuscript.

Corresponding authors

Correspondence to K. Harvati or R. R. Ackermann.

Ethics declarations

Competing interests

K.H. has an additional affiliation with the Centre for Early Sapiens Behavior (SapienCE) Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Norway, which was not involved in this project and is therefore not listed in this manuscript. R.R.A. declares no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Hominin samples used in analyses

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvati, K., Ackermann, R.R. Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins. Nat Ecol Evol 6, 1573–1585 (2022). https://doi.org/10.1038/s41559-022-01875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01875-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing