Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animals, protists and bacteria share marine biogeographic patterns

Abstract

Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns across the tree of life. Research describing these patterns at both regional and global scales has traditionally focused on the study of metazoan species. Consequently, there is a limited understanding of cross-phylum biogeographic structuring and an escalating need to understand the macroecology of both microscopic and macroscopic organisms. Here we used environmental DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably consistent biogeographic structure across the kingdoms of life despite billions of years of evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom found that environmental conditions (such as temperature) and, to a lesser extent, anthropogenic stressors (such as fishing pressure and pollution) explained some of the observed variation. Additionally, metazoans displayed biogeographic patterns that suggested regional biotic homogenization. Against the backdrop of global pervasive anthropogenic environmental change, our work highlights the importance of considering multiple domains of life to understand the maintenance and drivers of biodiversity patterns across broad taxonomic, ecological and geographical scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling sites, ASV taxonomic distribution and ASV richness.
Fig. 2: Patterns of β diversity.
Fig. 3: Plots showing distance between sites and community similarity measured using eDNA metabarcoding across South Africa.

Similar content being viewed by others

Data availability

The raw Illumina sequencing data are available from the European Nucleotide Archive under study accession number PRJEB38452; sample-specific accessions are provided in Supplementary Data 1. The associated metadata, R scripts and intermediate files are available at https://doi.org/10.5281/zenodo.4564075.

Code availability

All code used in the current study can be found at https://doi.org/10.5281/zenodo.4564075.

References

  1. Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article  Google Scholar 

  2. Awad, A. A., Griffiths, C. L. & Turpie, J. K. Distribution of South African marine benthic invertebrates applied to the selection of priority conservation areas. Divers. Distrib. 8, 129–145 (2002).

    Article  Google Scholar 

  3. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).

  4. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  5. Wallace, A. R. The Geographical Distribution of Animals, with a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s Surface (Macmillan, 1876).

  6. Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 89 (2017).

    Article  PubMed  Google Scholar 

  8. Kocsis, A. T., Reddin, C. J. & Kiessling, W. The stability of coastal benthic biogeography over the last 10 million years. Glob. Ecol. Biogeogr. 27, 1106–1120 (2018).

    Article  Google Scholar 

  9. Zaffosa, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).

    Article  Google Scholar 

  10. Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. https://doi.org/10.1038/s41467-017-01121-2 (2017).

  11. Beck, J. et al. What’s on the horizon for macroecology? Ecography 35, 673–683 (2012).

    Article  Google Scholar 

  12. Sunagawa, S. et al. Ocean plankton: structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  PubMed  Google Scholar 

  13. Shade, A. et al. Macroecology to unite all life, large and small. Trends Ecol. Evol. 33, 731–744 (2018).

    Article  PubMed  Google Scholar 

  14. Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richter, D. J. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. Preprint at bioRxiv https://doi.org/10.1101/867739 (2019).

  16. Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  18. Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Article  PubMed  Google Scholar 

  19. Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Olden, J. D. & Rooney, T. P. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeogr. 15, 113–120 (2006).

    Article  Google Scholar 

  22. Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernardo-Madrid, R. et al. Human activity is altering the world’s zoogeographical regions. Ecol. Lett. 22, 1297–1305 (2019).

    PubMed  Google Scholar 

  25. Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Article  PubMed  Google Scholar 

  28. Emanuel, B. P., Bustamante, R. H., Branch, G. M., Eekhout, S. & Odendaal, F. J. A zoogeographic and functional approach to the selection of marine reserves on the west coast of South Africa. South Afr. J. Mar. Sci. 12, 341–354 (1992).

    Article  Google Scholar 

  29. Griffiths, C. L., Robinson, T. B., Lange, L. & Mead, A. Marine biodiversity in South Africa: an evaluation of current states of knowledge. PLoS ONE 5, e12008 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Griffiths, C. L. et al. Impacts of human activities on marine animal life in the Benguela: a historical overview. Oceanogr. Mar. Biol. Annu. Rev. 42, 303–392 (2004).

    Google Scholar 

  31. Kaluza, P., Kolzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rapacciuolo, G., Beman, J. M., Schiebelhut, L. M. & Dawson, M. N. Microbes and macro-invertebrates show parallel β-diversity but contrasting α-diversity patterns in a marine natural experiment. Proc. R. Soc. B 286, 20190999 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Astorga, A. et al. Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Glob. Ecol. Biogeogr. 21, 365–375 (2012).

    Article  Google Scholar 

  34. Wang, J. et al. Patterns of elevational beta diversity in micro- and macroorganisms. Glob. Ecol. Biogeogr. 21, 743–750 (2012).

    Article  CAS  Google Scholar 

  35. Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–U1107 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Broman, E. et al. Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Mol. Ecol. 28, 3813–3829 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).

    Article  PubMed  Google Scholar 

  39. Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kelly, R. P. et al. Genetic signatures of ecological diversity along an urbanization gradient. PeerJ 4, e2444 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Blouin, D., Pellerin, S. & Poulin, M. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. Urban Ecosyst. 22, 879–892 (2019).

    Article  Google Scholar 

  42. Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 11559 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  PubMed  Google Scholar 

  44. Baas-Becking, L. G. M. Geobiologie; of inleiding tot de milieukunde (WP Van Stockum & Zoon NV, 1934).

  45. Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Farjalla, V. F. et al. Ecological determinism increases with organism size. Ecology 93, 1752–1759 (2012).

    Article  PubMed  Google Scholar 

  47. Wu, W. X. et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 12, 485–494 (2018).

    Article  PubMed  Google Scholar 

  48. Hellweger, F. L., van Sebille, E. & Fredrick, N. D. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345, 1346–1349 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Balint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).

    Article  PubMed  Google Scholar 

  50. He, K. S. et al. Will remote sensing shape the next generation of species distribution models? Remote Sens. Ecol. Conserv. 1, 4–18 (2015).

    Article  Google Scholar 

  51. Rius, M. et al. Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Glob. Ecol. Biogeogr. 23, 76–88 (2014).

    Article  Google Scholar 

  52. Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).

    Article  Google Scholar 

  53. Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4, 558–565 (2013).

    Article  Google Scholar 

  55. Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  57. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. R Core Team R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019).

  59. Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 4226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).

    Article  PubMed  Google Scholar 

  65. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (JPL_OurOceanProject, 2010); https://doi.org/10.5067/GHG1S-4FP01

  66. Zweng, M. M. et al. World Ocean Atlas 2018, Volume 2: Salinity NOAA Atlas NESDIS 82 (ed. Mishinov, A.) (NESDIS/US Department of Commerce, NOAA, 2019).

  67. Ocean Colour Climate Change Initiative Dataset Version 4.2 (European Space Agency, 2020).

  68. Anderson, M. J. in Wiley Stats Ref: Statistics Reference Online (eds Balakrishnan, N. et al.) 1–15 (John Wiley & Sons, 2014).

  69. Oksanen, J. et al. Vegan: Community ecology package. R package version 2.5–6 (2011).

  70. Kreft, H. & Jetz, W. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 37, 2029–2053 (2010).

    Article  Google Scholar 

  71. Salazar, G. EcolUtils: Utilities for community ecology analysis. R package version 0.1 (2018).

  72. Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    Article  PubMed  Google Scholar 

  73. Crabot, J., Clappe, S., Dray, S. & Datry, T. Testing the Mantel statistic with a spatially-constrained permutation procedure. Methods Ecol. Evol. 10, 532–540 (2019).

    Article  Google Scholar 

  74. McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

L.E.H. acknowledges the assistance of M. Czachur and T. Grevesse during field surveys, S. von der Heyden for lab consumables and assistance with fieldwork logistics, and J. Hudson and I. Haigh for assistance with remote sensing data. L.E.H. acknowledges S. Parker-Nance and the Elwandle Node of the South African Environmental Observation Network for assistance and in-country logistics. We acknowledge all marina owners and operators for field site access. We acknowledge the Environmental Sequencing Facility at the National Oceanography Centre, Southampton, for advice and sequencing assistance. We thank the IRIDIS High Performance Computing Facility and associated support services at the University of Southampton. L.E.H. was supported by the Natural Environmental Research Council (grant no. NE/L002531/1). The UK Research and Innovation Newton Fund (grant no. ES/N013913/1) supported L.E.H.’s research stay in South Africa.

Author information

Authors and Affiliations

Authors

Contributions

L.E.H. and M.R. designed the study. L.E.H. collected the samples, generated and analysed the data, prepared all figures and wrote the first draft of the paper. M.d.B., S.C., G.C., J.R. and M.R. supervised and advised the research. All authors substantially contributed to further manuscript drafts and provided final approval for publication.

Corresponding author

Correspondence to Luke E. Holman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Simon Jarman, Ryan Kelly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Taxonomic identity of sequenced reads.

Bar charts indicating the proportion of reads assigned per phyla (metazoans/bacteria) or supergroup (protists) from environmental DNA metabarcoding of seawater collected from sites across South Africa. The three rows correspond with data from metazoans (top), protists (middle) and bacteria (bottom). Site name abbreviations as in Supplementary Table 9.

Extended Data Fig. 2 Beta diversity patterns of additional data subsets.

Observed patterns of β-diversity from environmental DNA metabarcoding of: a metazoans from the 18S dataset and b protists from the COI dataset; based on Jaccard dissimilarities between amplicon sequence variants along the coast of South Africa. The first column of plots shows non-metric multidimensional scaling (nMDS) ordinations. Coloured hulls show the spread of the data and lines indicate the spread around the centroid grouped by coast with the east, south and west coasts denoted by orange, green and blue respectively. Site name abbreviations as in Supplementary Table 9. Natural sites are denoted with triangles and artificial sites with filled circles. The second column of plots shows the same nMDS ordinations as the first column including the output of a generalised additive model with a 2D smoothed function for each of the significant environmental / impact variables overlaid; temperature – mean sea surface temperature (°C); impact – human marine impact score (unitless measurement, see details in main text) against the two nMDS axes. The Venn diagram charts indicate the percentage total of variance in community dissimilarity explained by each significant variable, derived using variance partitioning of a distance-based redundancy analysis.

Supplementary information

Supplementary Information

Supplementary Tables 1–9 and Notes 1–5.

Reporting Summary

Peer Review Information

Supplementary Data 1

Sample identifiers and raw sequence accession numbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holman, L.E., de Bruyn, M., Creer, S. et al. Animals, protists and bacteria share marine biogeographic patterns. Nat Ecol Evol 5, 738–746 (2021). https://doi.org/10.1038/s41559-021-01439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01439-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing