Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methane oxidation minimizes emissions and offsets to carbon burial in mangroves

Abstract

Maximizing carbon sequestration in mangroves is part of the global effort to combat the climate crisis. However, methane (CH4) emissions can partially offset carbon sequestration in mangroves. Previous estimates have suggested that CH4 emissions offset organic carbon burial by 20% in mangroves with substantial freshwater inputs and/or in highly impacted mangroves. Here we resolve the magnitude and drivers of the mangrove CH4 offset using multiple isotopic tracers across a latitudinal gradient. CH4 emission offsets were smaller in high-salinity (~7%) than in freshwater-influenced (~27%) mangroves. Carbon sequestration was disproportionally high compared with CH4 emissions in understudied tropical areas. Low CH4 emissions were explained by minor freshwater inputs minimizing CH4 production in saline, high-sulfate conditions and intense CH4 oxidation in porewaters and surface waters. CH4 oxidation in mangrove surface waters reduced potential aquatic CH4 emissions by 10–33%. Overall, carbon sequestration through mangrove preservation and restoration is less affected by CH4 emissions than previously thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissolved CH4 concentrations and emissions in seawater-dominated and freshwater-influenced mangroves.
Fig. 2: Site-specific CH4 emissions and offsets to organic carbon burial in seawater-dominated, pristine mangroves.
Fig. 3: Large CH4 oxidation in mangroves revealed by δ13C-CH4.
Fig. 4: Global upscaling of annual CH4 emissions and organic carbon burial in sediments.

Similar content being viewed by others

Data availability

The raw datasets of all new observations and literature compilation are available on figshare (https://doi.org/10.6084/m9.figshare.24204351)75. Source data are provided with this paper.

References

  1. McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  2. Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article  ADS  CAS  Google Scholar 

  4. Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cycles 22, GB2013 (2008).

    Article  ADS  Google Scholar 

  5. Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 64, 996–1013 (2019).

    Article  ADS  CAS  Google Scholar 

  6. Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyre, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnol. Oceanogr. 58, 475–488 (2013).

    Article  ADS  CAS  Google Scholar 

  7. Reithmaier, G. M. S. et al. Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes. Nat. Commun. 14, 8196 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyre, B. D. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks—a revision of global mangrove CO2 emissions. Geochim. Cosmochim. Acta 222, 729–745 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Wang, F. et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci. Rev. 8, nwaa296 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Saintilan, N., Rogers, K., Mazumder, D. & Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128, 84–92 (2013).

    Article  ADS  CAS  Google Scholar 

  11. Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: a review. Aquat. Bot. 89, 201–219 (2008).

    Article  CAS  Google Scholar 

  12. Barnes, J. et al. Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophys. Res. Lett. 33, 4–9 (2006).

    Article  Google Scholar 

  13. Kristensen, E. et al. Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Mar. Ecol. Prog. Ser. 370, 53–67 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article  Google Scholar 

  16. Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. 26, 2988–3005 (2020).

    Article  ADS  Google Scholar 

  17. Rosentreter, J. A. & Williamson, P. Concerns and uncertainties relating to methane emissions synthesis for vegetated coastal ecosystems. Glob. Change Biol. 26, 5351–5352 (2020).

    Article  ADS  Google Scholar 

  18. Williamson, P. & Gattuso, J.-P. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness. Front. Clim. https://doi.org/10.3389/fclim.2022.853666 (2022).

  19. Liu, J. et al. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Glob. Change Biol. 26, 4998–5016 (2020).

    Article  ADS  Google Scholar 

  20. Borges, A. V. & Abril, G. in Treatise on Estuarine and Coastal Science Vol. 5 (eds Wolanski, E. & McLusky, D.) 119–161 (Academic Press, Elsevier, 2011).

  21. Bouillon, S. et al. Importance of intertidal intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences 4, 311–322 (2007).

    Article  ADS  CAS  Google Scholar 

  22. Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).

    Article  ADS  CAS  Google Scholar 

  23. King, G. M. in Advances in Microbial Ecology (ed. Marshall, K. C.) 431–468 (Springer, 1992); https://doi.org/10.1007/978-1-4684-7609-5_9

  24. Van Der Nat, F. J. W. A., De Brouwer, J. F. C., Middelburg, J. J. & Laanbroek, H. J. Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Appl. Environ. Microbiol. 63, 4734–4740 (1997).

    Article  ADS  PubMed  Google Scholar 

  25. Sánchez-Carrillo, S. et al. Methane production and oxidation in mangrove soils assessed by stable isotope mass balances. Water 13, 1867 (2021).

    Article  Google Scholar 

  26. Whiticar, M. J. in Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate (ed. Wilkes, H.) 1–78 (Springer, 2020); https://doi.org/10.1007/978-3-319-54529-5_5-1

  27. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Bastviken, D., Ejlertsson, J. & Tranvik, L. Measurement of methane oxidation in lakes: a comparison of methods. Environ. Sci. Technol. 36, 3354–3361 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Call, M. et al. High pore-water derived CO2 and CH4 emissions from a macro-tidal mangrove creek in the Amazon region. Geochim. Cosmochim. Acta 247, 106–120 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyre, B. D. Factors controlling seasonal CO2 and CH4 emissions in three tropical mangrove-dominated estuaries in Australia. Estuar. Coast. Shelf Sci. 215, 69–82 (2018).

    Article  ADS  CAS  Google Scholar 

  31. Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article  ADS  CAS  Google Scholar 

  32. Borges, A. V., Abril, G. & Bouillon, S. Carbon dynamics and CO2 and CH4 outgassing in the Mekong Delta. Biogeosciences 15, 1093–1114 (2018).

    Article  ADS  CAS  Google Scholar 

  33. Alongi, D. M. Carbon cycling in the world’s mangrove ecosystems revisited: significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests 11, 977 (2020).

    Article  Google Scholar 

  34. Chen, G. C. et al. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Sci. Total Environ. 487, 91–96 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Barroso, G. C. et al. Linking eutrophication to carbon dioxide and methane emissions from exposed mangrove soils along an urban gradient. Sci. Total Environ. 850, 157988 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Sadat-Noori, M., Maher, D. T. & Santos, I. R. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries Coasts 39, 639–656 (2016).

    Article  CAS  Google Scholar 

  37. Martens, C. S., Albert, D. B. & Alperin, M. J. Biogeochemical processes controlling methane in gassy coastal sediments—Part 1. A model coupling organic matter flux to gas production, oxidation and transport. Cont. Shelf Res. 18, 1741–1770 (1998).

    Article  ADS  Google Scholar 

  38. Gonsalves, M.-J., Fernandes, C. E. G., Fernandes, S. O., Kirchman, D. L. & Bharathi, P. A. L. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea. Environ. Monit. Assess. 182, 385–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).

    Article  Google Scholar 

  40. Sea, M. A., Garcias-Bonet, N., Saderne, V. & Duarte, C. M. Carbon dioxide and methane fluxes at the air–sea interface of Red Sea mangroves. Biogeosciences 15, 5365–5375 (2018).

    Article  ADS  CAS  Google Scholar 

  41. Jeffrey, L. C. et al. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. N. Phytol. 224, 146–154 (2019).

    Article  CAS  Google Scholar 

  42. Gao, C.-H. et al. Source or sink? A study on the methane flux from mangroves stems in Zhangjiang estuary, southeast coast of China. Sci. Total Environ. 788, 147782 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhang, C. et al. Massive methane emission from tree stems and pneumatophores in a subtropical mangrove wetland. Plant Soil 473, 489–505 (2022).

    Article  CAS  Google Scholar 

  44. Krithika, K., Purvaja, R. & Ramesh, R. Fluxes of methane and nitrous oxide from an Indian mangrove. Current Science 94, 218–224 (2008).

    CAS  Google Scholar 

  45. Padhy, S. R. et al. Seasonal fluctuation in three mode of greenhouse gases emission in relation to soil labile carbon pools in degraded mangrove, Sundarban, India. Sci. Total Environ. 705, 135909 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Chuang, P. C. et al. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. J. Geophys. Res. Biogeosci. 122, 1156–1174 (2017).

    Article  CAS  Google Scholar 

  47. Li, C.-H., Zhou, H.-W., Wong, Y.-S. & Tam, N. F.-Y. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci. Total Environ. 407, 5772–5779 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Middelburg, J. J. et al. Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser. 132, 157–168 (1996).

    Article  ADS  CAS  Google Scholar 

  49. Chanton, J. P., Martens, C. S. & Kelley, C. A. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol. Oceanogr. 34, 807–819 (1989).

    Article  ADS  CAS  Google Scholar 

  50. McGenity, T. J. & Sorokin, D. Y. in Biogenesis of Hydrocarbons (eds Stams, A. J. M. & Sousa, D.) 1–27 (Springer, 2018); https://doi.org/10.1007/978-3-319-53114-4_12-1

  51. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Marchand, C., David, F., Jacotot, A., Leopold, A. & Ouyang, X. in Estuarine and Coastal Sciences Series Vol. 2 (eds Ouyang, X. et al) 55–91 (Elsevier, 2022).

  54. Weston, N. B., Dixon, R. E. & Joye, S. B. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. J. Geophys. Res. Biogeosci. 111, G01009 (2006).

    Article  ADS  Google Scholar 

  55. Martens, C. S. & Berner, R. A. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185, 1167–1169 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Bartlett, K. B., Bartlett, D. S., Harriss, R. C. & Sebacher, D. I. Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4, 183–202 (1987).

    Article  CAS  Google Scholar 

  57. Chambers, L. G., Reddy, K. R. & Osborne, T. Z. Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci. Soc. Am. J. 75, 2000–2007 (2011).

    Article  ADS  CAS  Google Scholar 

  58. Maher, D. T., Cowley, K., Santos, I. R., Macklin, P. & Eyre, B. D. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements. Mar. Chem. 168, 69–79 (2015).

    Article  CAS  Google Scholar 

  59. Yau, Y. Y. Y. et al. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnol. Oceanogr. https://doi.org/10.1002/lno.12155 (2022).

  60. Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Twilley, R. R., Chen, R. H. & Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 64, 265–288 (1992).

    Article  ADS  CAS  Google Scholar 

  62. Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121, 2600–2609 (2016).

    Article  ADS  Google Scholar 

  63. Abril, G. & Iversen, N. Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar. Ecol. Prog. Ser. 230, 171–181 (2002).

    Article  ADS  Google Scholar 

  64. Breithaupt, J. L. & Steinmuller, H. E. Refining the global estimate of mangrove carbon burial rates using sedimentary and geomorphic settings. Geophys. Res. Lett. 49, e2022GL100177 (2022).

    Article  ADS  CAS  Google Scholar 

  65. Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 14652 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iversen, N. in Microbiology of Atmospheric Trace Gases (eds Murrell, J. C. & Kelly, D. P.) 51–68 (Springer, 1996).

  67. Tait, D. R., Maher, D. T., Macklin, P. A. & Santos, I. R. Mangrove pore water exchange across a latitudinal gradient. Geophys. Res. Lett. 43, 3334–3341 (2016).

    Article  ADS  Google Scholar 

  68. Lugo, A. E. & Snedaker, S. C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5, 39–64 (1974).

    Article  Google Scholar 

  69. Reithmaier, G. M. S., Ho, D. T., Johnston, S. G. & Maher, D. T. Mangroves as a source of greenhouse gases to the atmosphere and alkalinity and dissolved carbon to the coastal ocean: a case study from the Everglades National Park, Florida. J. Geophys. Res. Biogeosci. 125, e2020JG005812 (2020).

    Article  ADS  CAS  Google Scholar 

  70. Dutta, M. K., Mukherjee, R., Jana, T. K. & Mukhopadhyay, S. K. Biogeochemical dynamics of exogenous methane in an estuary associated to a mangrove biosphere; the Sundarbans, NE coast of India. Mar. Chem. 170, 1–10 (2015).

    Article  CAS  Google Scholar 

  71. Dutta, M. K., Bianchi, T. S. & Mukhopadhyay, S. K. Mangrove methane biogeochemistry in the Indian Sundarbans: a proposed budget. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00187 (2017).

  72. Das, S., Ganguly, D., Chakraborty, S., Mukherjee, A. & Kumar De, T. Methane flux dynamics in relation to methanogenic and methanotrophic populations in the soil of Indian Sundarban mangroves. Mar. Ecol. 39, e12493 (2018).

    Article  ADS  Google Scholar 

  73. Linto, N. et al. Carbon dioxide and methane emissions from mangrove-associated waters of the Andaman Islands, Bay of Bengal. Estuaries Coasts 37, 381–398 (2014).

    Article  CAS  Google Scholar 

  74. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article  Google Scholar 

  75. Cotovicz, L. C. et al. Methane oxidation minimizes emissions and offsets to carbon burial in mangroves. Data sets. figshare https://doi.org/10.6084/m9.figshare.24204351 (2023).

  76. Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C. & Santos, I. R. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Glob. Biogeochem. Cycles 30, 753–766 (2016).

    Article  ADS  CAS  Google Scholar 

  77. Holloway, C. J. et al. Manganese and iron release from mangrove porewaters: a significant component of oceanic budgets? Mar. Chem. 184, 43–52 (2016).

    Article  CAS  Google Scholar 

  78. Sippo, J. Z. et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnol. Oceanogr. Lett. 2, 1–8 (2017).

    Article  Google Scholar 

  79. Maher, D. T. et al. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environ. Sci. Technol. 47, 12938–12945 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Webb, J. R., Maher, D. T. & Santos, I. R. Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: comparing response times of air–water equilibrators. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10092 (2016).

  81. Pierrot, D. et al. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Res. Part II 56, 512–522 (2009).

    Article  ADS  Google Scholar 

  82. Santos, I. R., Maher, D. T. & Eyre, B. D. Coupling automated radon and carbon dioxide measurements in coastal waters. Environ. Sci. Technol. 46, 7685–7691 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Wiesenburg, D. A. & Guinasso, N. L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng. Data 24, 356–360 (1979).

    Article  CAS  Google Scholar 

  84. Wanninkhof, R. Relationship between wind speed and gas exchange. J. Geophys. Res. 97, 7373–7382 (1992).

    Article  ADS  Google Scholar 

  85. Raymond, P. A. & Cole, J. J. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24, 312 (2001).

    Article  CAS  Google Scholar 

  86. Borges, A. V. et al. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49, 1630–1641 (2004).

  87. Ho, D. T., Ferrón, S., Engel, V. C., Larsen, L. G. & Barr, J. G. Air–water gas exchange and CO2 flux in a mangrove-dominated estuary. Geophys. Res. Lett. 41, 108–113 (2014).

    Article  ADS  CAS  Google Scholar 

  88. Gatland, J. R., Santos, I. R., Maher, D. T., Duncan, T. M. & Erler, D. V. Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: implications for wetland global warming potential. J. Geophys. Res. Biogeosci. 119, 2013JG002544 (2014).

    Article  Google Scholar 

  89. Hope, D., Dawson, J. J. C., Cresser, M. S. & Billett, M. F. A method for measuring free CO2 in upland streamwater using headspace analysis. J. Hydrol. 166, 1–14 (1995).

    Article  ADS  Google Scholar 

  90. Ketterer, M. E., Hafer, K. M., Jones, V. J. & Appleby, P. G. Rapid dating of recent sediments in Loch Ness: inductively coupled plasma mass spectrometric measurements of global fallout plutonium. Sci. Total Environ. 322, 221–229 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Sanders, C. J. et al. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 41, 2475–2480 (2014).

    Article  ADS  CAS  Google Scholar 

  92. Neubauer, S. C. & Megonigal, J. P. Correction to: Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 22, 1931–1932 (2019).

    Article  CAS  Google Scholar 

  93. Abril, G. et al. Export of 13C-depleted dissolved inorganic carbon from a tidal forest bordering the Amazon Estuary. Estuar. Coast. Shelf Sci. 129, 23–27 (2013).

    Article  ADS  CAS  Google Scholar 

  94. Happell, J. D., Chanton, J. P. & Showers, W. S. The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochim. Cosmochim. Acta 58, 4377–4388 (1994).

    Article  ADS  CAS  Google Scholar 

  95. Tyler, S. C., Bilek, R. S., Sass, R. L. & Fisher, F. M. Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, δ13C, and δD of CH4. Glob. Biogeochem. Cycles 11, 323–348 (1997).

    Article  ADS  CAS  Google Scholar 

  96. Köhler, P., Fischer, H., Schmitt, J. & Munhoven, G. On the application and interpretation of Keeling plots in paleo climate research—deciphering δ13C of atmospheric CO2 measured in ice cores. Biogeosciences 3, 539–556 (2006).

    Article  ADS  Google Scholar 

  97. Holler, T. et al. Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ. Microbiol. Rep. https://doi.org/10.1111/j.1758-2229.2009.00074.x (2009).

  98. Ward, N. D. et al. Pathways for methane emissions and oxidation that influence the net carbon balance of a subtropical cypress swamp. Front. Earth Sci. 8, 1–16 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for field investigations and analytical instrumentation was provided by the Australian Research Council to I.R.S. (LE120100156 and DE140101733). Some of the analysis and travel were funded by the Swedish Research Council to I.R.S. (2020-00457). G.A. was supported by the French-Brazilian International research project VELITROP (CNRS, INEE). L.C.C. thanks the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP, INT-00159-00009.01.00/19) and the Post Graduate Program in Tropical Marine Sciences of the Federal University of Ceará (UFC-PRPPG) for a visiting researcher grant at the Marine Sciences Institute (LABOMAR). L.C.C. also thanks the German Federal Ministry of Education and Research through the Project Carbostore, grant no. 03F0875B, for the Postdoctoral Fellowship Grant.

Author information

Authors and Affiliations

Authors

Contributions

L.C.C. performed most of the data analysis, made tables and figures, and wrote the first draft with support from I.R.S., G.A. and others. I.R.S. designed, managed and obtained funding for the project. G.A. supported the interpretation of methane isotopic composition and calculation of oxidation rates. C.J.S. was responsible for sediment analysis and carbon burial estimates. D.R.T., J.Z.S., C.H. and D.T.M. helped design the field campaign and performed field and laboratory work. D.T.M. and J.Z.S. calculated methane emissions and drafted some of the methods section. Y.Y.Y.Y. drafted the introduction and performed some of the literature review. All authors edited the paper and approved its submission.

Corresponding author

Correspondence to Luiz C. Cotovicz Jr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Derrick Lai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global map of study areas included in the compilation of CO2 and CH4 emissions.

Global map of study areas including CO2 and CH4 emission sites (blue dots, compiled data) and six field study sites in Australia (red numbered dots) showed in Fig. 1 of the main manuscript. The six panels represent digital elevation models of the field sites and their catchments. Image of global mangrove area modified from Giri et al.74. The reference list containing all compiled data can be found at: https://doi.org/10.6084/m9.figshare.24204351.

Source data

Extended Data Fig. 2 Time series observations of CH4 concentrations.

Time series observations of CH4 concentrations (Y left axis) and tidal height (Y right axis) in the six marine-dominated mangroves. Note the different Y-axes (left and right) scales. Grey shaded area represents tidal height.

Source data

Extended Data Fig. 3 Time series observations of δ13C-CH4 signatures.

Time series observations of δ13C-CH4 signatures (Y left axis) and tidal height (Y right axis) in the six marine-dominated mangroves. Note the different Y-axes (left and right) scales. Grey shaded area represents tidal height.

Source data

Extended Data Fig. 4 Time series observations of water CO2 partial pressure (pCO2) values.

Time series observations of water CO2 partial pressure (pCO2) values (Y left axis) and tidal height (Y right axis) in the six marine-dominated mangroves. Note the different Y-axes (left and right) scales. Grey shaded area represents tidal height.

Source data

Extended Data Fig. 5 Time series observations of δ13C-CO2 signatures.

Time series observations of δ13C-CO2 signatures (Y left axis) and tidal height (Y right axis) in the six marine-dominated mangroves. Note the different Y-axes (left and right) scales. Grey shaded area represents tidal height.

Source data

Extended Data Fig. 6 Relationship between pCO2 and CH4 in the six marine-dominated mangroves.

The color gradient represents 222Rn concentrations.

Source data

Extended Data Fig. 7 Global upscaling of CH4 emissions and organic carbon burial in sediments.

A) Median (interquartile range) rates of CH4 emissions and organic carbon burial in global seawater-dominated mangroves. Mangrove ecosystems were considered being inundated 65% of the time (water-atmosphere flux) and exposed 35% of the time (sediment-atmosphere flux) in seawater-dominated mangroves. B) Median (interquartile range) rates of CH4 emissions and organic carbon burial in global freshwater-influenced mangroves. Mangrove ecosystems were considered being inundated 50% of the time (water-atmosphere flux) and exposed 50% of the time (sediment-atmosphere flux) in freshwater-influenced mangroves. Details on the upscaling calculation appear in the methods section. Credits: trees, Diana Kleine, Marine Botany UQ, under Creative Commons license CC BY SA 4.0; intertidal mud, Dieter Tracey, Coastal CRC, under Creative Commons license CC BY SA 4.0.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–7, Tables 1–8 and References.

Reporting Summary

Source data

Source Data Fig. 1

Raw data used to construct Fig. 1.

Source Data Fig. 2, 3 and Source Data Extended Data Fig. 1-6

Raw data including all observations of CH4 concentrations, emissions and ancillary parameters in surface waters and porewaters used to calculate the CH4 emissions and the offsets.

Source Data Fig. 4 and Source Data Extended Data Fig. 7

Global data compilation used to calculate global-scale CH4 offsets to organic carbon burial in mangroves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotovicz, L.C., Abril, G., Sanders, C.J. et al. Methane oxidation minimizes emissions and offsets to carbon burial in mangroves. Nat. Clim. Chang. 14, 275–281 (2024). https://doi.org/10.1038/s41558-024-01927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-01927-1

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology