Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Putting plasticity into practice for effective conservation actions under climate change

Abstract

Phenotypic plasticity may help species to persist in the face of rapid change, yet we lack a management-friendly framework for incorporating plasticity into conservation practice. Here we emphasize the importance of phenotypic plasticity for management—when and how it matters—and describe three challenges that currently impede its consideration in conservation management. We propose a common language and framework that can be applied by scientists and conservation practitioners that connects plasticity to management actions. Crucially, our framework considers plasticity through the lens of an organism’s ‘fit’ to its environment and how that fit will be impacted by climatic changes. Finally, we present a road map for developing tools to highlight where consideration of plasticity is valuable for effective management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The fundamentals of phenotypic plasticity for a species.
Fig. 2: The nature of plasticity matters in response to rapid environmental change.
Fig. 3: Matrix of scenarios based on whether plasticity affected outcomes of conservation activities.

Similar content being viewed by others

References

  1. Meehl, G. A. et al. Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 81, 427–436 (2000).

    Article  Google Scholar 

  2. Hoegh-Guldberg, O., Jacob, D. & Taylor, M. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).

  3. Pörtner, H.-O. et al. (eds) Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).

  4. Montoya, J. M. & Raffaelli, D. Climate change, biotic interactions and ecosystem services. Phil. Trans. R. Soc. B 365, 2013–2018 (2010).

    Article  Google Scholar 

  5. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  6. Arneth et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).

    Article  CAS  Google Scholar 

  7. Turner, M. G. et al. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).

    Article  Google Scholar 

  8. Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    Article  Google Scholar 

  9. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    Article  CAS  Google Scholar 

  10. Visser, M. E. Keeping up with a warming world: assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008).

    Article  Google Scholar 

  11. Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).

    Article  Google Scholar 

  12. Beever, E. A. et al. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conserv. Lett. 9, 131–137 (2016).

  13. Pigliucci, M. Phenotypic Plasticity: Beyond Nature and Nurture. (Johns Hopkins Univ. Press, 2001.

    Book  Google Scholar 

  14. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).

    Book  Google Scholar 

  15. Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).

    Article  Google Scholar 

  16. Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B 374, 20180186 (2019).

    Article  Google Scholar 

  17. Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19, 1283–1295 (2010).

    Article  CAS  Google Scholar 

  18. Duncan, E. J., Gluckman, P. D. & Dearden, P. K. Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J. Exp. Zool. B 322, 208–220 (2014).

    Article  CAS  Google Scholar 

  19. Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).

    Article  Google Scholar 

  20. Sandoval-Castillo, J. et al. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc. Natl Acad. Sci. USA 117, 17112–17121 (2020).

    Article  CAS  Google Scholar 

  21. Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Heredity 107, 25–41 (2016).

    Article  Google Scholar 

  22. Gomez-Mestre, I. & Jovani, R. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proc. R. Soc. B 280, 20131869 (2013).

    Article  Google Scholar 

  23. Schneider, R. F. & Meyer, A. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol. Ecol. 26, 330–350 (2016).

    Article  Google Scholar 

  24. Enbody, E. D. et al. Ecological adaptation in European eels is based on phenotypic plasticity. Proc. Natl Acad. Sci. USA 118, e2022620118 (2021).

    Article  CAS  Google Scholar 

  25. Serrouya, R. et al. Saving endangered species using adaptive management. Proc. Natl Acad. Sci. USA 116, 6181–6186 (2019).

    Article  CAS  Google Scholar 

  26. Gaitán-Espitia, J. D. & Hobday, A. J. Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Glob. Change Biol. 27, 475–488 (2021).

    Article  Google Scholar 

  27. Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article  Google Scholar 

  28. Raimundo, R. L., Guimarães, P. R. Jr & Evans, D. M. Adaptive networks for restoration ecology. Trends Ecol. Evol. 33, 664–675 (2018).

    Article  Google Scholar 

  29. Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).

    Article  Google Scholar 

  30. Nicotra, A. B., Beever, E. A., Robertson, A. L., Hofmann, G. E. & O’Leary, J. Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conserv. Biol. 29, 1268–1278 (2015).

    Article  Google Scholar 

  31. Thurman, L. L. et al. Applying assessments of adaptive capacity to inform natural-resource management in a changing climate. Conserv. Biol. 36, e13838 (2022).

    Article  Google Scholar 

  32. Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. Phil. Trans. R. Soc. B 374, 20180185 (2019).

    Article  Google Scholar 

  33. Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D. & Steiner, U. K. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B 286, 20190653 (2019).

    Article  Google Scholar 

  34. Crates, R., Stojanovic, D. & Heinsohn, R. The phenotypic costs of captivity. Biol. Rev. https://doi.org/10.1111/brv.12913 (2022).

    Article  Google Scholar 

  35. Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: an endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).

    Article  Google Scholar 

  36. Muralidhar, A. et al. Know your enemy? Conservation management causes loss of antipredator behaviour to novel predators in New Zealand robins. Anim. Behav. 149, 135–142 (2019).

    Article  Google Scholar 

  37. Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    Article  CAS  Google Scholar 

  38. Cook, C. N. & Sgrò, C. M. Conservation practitioners’ understanding of how to manage evolutionary processes. Conserv. Biol. 33, 993–1001 (2019).

    Article  Google Scholar 

  39. Paget, S., Gleiss, A., Kuchling, G. & Mitchell, N. J. Activity of a freshwater turtle varies across a latitudinal gradient: implications for the success of assisted colonisation. Funct. Ecol. https://doi.org/10.1111/1365-2435.14338 (2023).

    Article  Google Scholar 

  40. Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2017).

  41. Faulkner, K. T., Clusella-Trullas, S., Peck, L. S. & Chown, S. J. Lack of coherence in the warming responses of marine crustaceans. Funct. Ecol. 28, 895–903 (2014).

    Article  Google Scholar 

  42. Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article  Google Scholar 

  43. Marshall, D. J. & Arnold, T. When is a maternal effect adaptive? Oikos 116, 1957–1963 (2007).

    Article  Google Scholar 

  44. Uller, T., Najagawa, S. & English, S. Weak evidence for anticipatory parental effects in plants and animals. J. Evol. Biol. 26, 2161–2170 (2013).

    Article  CAS  Google Scholar 

  45. Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).

    Article  Google Scholar 

  46. Ghalambor, C. K., Martin, L. B. & Woods, H. A. in Integrative Organismal Biology 1st edn (eds Martin, L. B. et al.) Ch. 1 (John Wiley & Sons, 2015).

  47. Davis, J. M. P., van Heerwaarden, B., Sgrò, C. M., Donald, J. A. & Kemp, D. J. Low genetic variation in cold tolerance linked to species distributions in butterflies. Evol. Ecol. 28, 495–504 (2013).

    Article  Google Scholar 

  48. Herman, J. J., Spencer, H. G., Donohue, K. & Sultan, S. E. How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68, 632–643 (2014).

    Article  Google Scholar 

  49. Burgess, S. C. & Marshall, D. J. Adaptive parental effects: the importance of estimating environmental predictability and offspring fitness appropriately. Oikos 123, 769–776 (2014).

    Article  Google Scholar 

  50. Leimar, O. & McNamara, J. M. The evolution of transgenerational integration of information in heterogeneous environments. Am. Nat. 185, E55–E69 (2015).

    Article  Google Scholar 

  51. Reed, T. E., Waples, R. S., Schindler, D. E., Hard, J. J. & Kinnison, M. T. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc. R. Soc. B 277, 3391–3400 (2010).

    Article  Google Scholar 

  52. Leung, C., Rescan, M., Grulois, D. & Chevin, L. M. Reduced phenotypic plasticity evolves in less predictable environments. Ecol. Lett. 23, 1664–1672 (2020).

    Article  Google Scholar 

  53. Schaum, C. E. & Collins, S. Plasticity predicts evolution in a marine alga. Proc. R. Soc. B 281, 20141486 (2014).

    Article  Google Scholar 

  54. Nevoux, M., Forcada, J., Barbraud, C., Croxall, J. & Weimerskirch, H. Bet-hedging response to environmental variability, an intraspecific comparison. Ecology 91, 2416–2427 (2010).

    Article  Google Scholar 

  55. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    Article  CAS  Google Scholar 

  56. Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration and intensity. Nat. Commun. 12, 2754 (2021).

    Article  CAS  Google Scholar 

  57. Cook, C. N. & Sgrò, C. M. Aligning science and policy to achieve evolutionary enlightened conservation. Conserv. Biol. 31, 501–512 (2016).

    Article  Google Scholar 

  58. Villellas, J. et al. Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant. Ecol. Lett. 24, 2378–2393 (2021).

    Article  Google Scholar 

  59. Dai, P. et al. Life-history trait plasticity and its relationships with plant adaptation and insect fitness: a case study on the aphid Sitobion avenae. Sci. Rep. 6, 29974 (2016).

    Article  CAS  Google Scholar 

  60. Bonnet, T. et al. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17, e3000493 (2019).

    Article  CAS  Google Scholar 

  61. Bell, D. L. & Galloway, L. F. Plasticity to neighbour shade: fitness consequences and allometry. Funct. Ecol. 21, 1146–1153 (2007).

    Article  Google Scholar 

  62. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, 1930).

    Book  Google Scholar 

  63. Stearns, S. C. & Kawecki, T. J. Fitness sensitivity and the canalisation of life-history traits. Evolution 48, 1438–1450 (1994).

    Article  Google Scholar 

  64. Crispo, E. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61, 2469–2479 (2007).

    Article  Google Scholar 

  65. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article  CAS  Google Scholar 

  66. Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).

    Article  CAS  Google Scholar 

  67. Cleves, P. A. et al. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proc. Natl Acad. Sci. USA 117, 28899–28905 (2020).

    Article  CAS  Google Scholar 

  68. Chevin, L.-M., Gallet, R., Gomulkiewicz, R., Holt, R. D. & Fellous, S. Phenotypic plasticity in evolutionary rescue experiments. Proc. R. Soc. B 368, 20120089 (2013).

    Google Scholar 

  69. Bucharova, A. Assisted migration within species range ignores biotic interactions and lacks evidence. Restor. Ecol. 25, 14–18 (2017).

    Article  Google Scholar 

  70. Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Article  Google Scholar 

  71. Eger, A. M. et al. Playing to the positives: using synergies to enhance kelp forest restoration. Front. Mar. Sci. 7, 544 (2020).

    Article  Google Scholar 

  72. Varner, J. & Dearing, M. D. Dietary plasticity in pikas as a strategy for atypical resource landscapes. J. Mammal. 95, 72–81 (2014).

    Article  Google Scholar 

  73. Clout, M. N., Elliott, G. P. & Robertson, B. C. Effects of supplementary feeding on the offspring sex-ratio of kakapo: a dilemma for the conservation of a polygynous parrot. Biol. Conserv. 107, 13–18 (2002).

    Article  Google Scholar 

  74. Robertson, B. C., Elliott, G. P., Eason, D. K., Clout, M. N. & Gemmell, N. J. Sex allocation theory aids species conservation. Biol. Lett. 2, 229–231 (2006).

    Article  Google Scholar 

  75. Kelly, E. & Phillips, B. L. Targeted gene flow and rapid adaptation in an endangered marsupial. Conserv. Biol. 33, 112–121 (2019).

    Article  Google Scholar 

  76. Jolly, C. J., Kelly, E., Gillespie, G. R., Phillips, B. & Webb, J. K. Out of the frying pan: reintroduction of toad-smart northern quolls to southern Kakadu National Park. Austr. Ecol. 43, 139–149 (2018).

    Article  Google Scholar 

  77. Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).

    Article  Google Scholar 

  78. Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).

    Article  Google Scholar 

  79. van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214 (2021).

    Article  Google Scholar 

  80. Gauzere, J. et al. Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology. Evol. Lett. 4, 109–123 (2020).

    Article  Google Scholar 

  81. Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35, 319–328 (2020).

    Article  Google Scholar 

  82. Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).

    Article  CAS  Google Scholar 

  83. Berkelmans, R. in Coral Bleaching Ecological Studies Vol. 205 (eds van Oppen, M. J. H. & Lough, J. M.) 103–119 (Springer, 2009).

  84. Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).

    Article  Google Scholar 

  85. Natural England and the RSPB Climate Change Adaptation Manual—Evidence to Support Nature Conservation in a Changing Climate 2nd edn (Natural England, 2019).

  86. Svensson, E. I., Gomez-Llano, M. & Waller, J. T. Selection on phenotypic plasticity favors thermal canalisation. Proc. Natl Acad. Sci. USA 117, 29767–29774 (2020).

    Article  CAS  Google Scholar 

  87. Bailey, T. G. et al. Embedding genetics experiments in restoration to guide plant choice for a degraded landscape with a changing climate. Ecol. Manag. Restor. 22, 92–105 (2021).

    Article  Google Scholar 

  88. Hoffmann, E. P., Cavanough, K. L. & Mitchell, N. J. Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche. Conserv. Physiol. 9, coab027 (2021).

    Article  Google Scholar 

  89. Blackburn, T. M. & Duncan, R. P. Determinants of establishment success in introduced birds. Nature 414, 195–197 (2001).

    Article  CAS  Google Scholar 

  90. Buckley, L. B., Schoville, S. D. & Williams, C. M. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J. Exp. Biol. 224, jeb228031 (2021).

    Article  Google Scholar 

  91. Takahashi, Y. et al. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies. Nat. Commun. 5, 4468 (2014).

    Article  CAS  Google Scholar 

  92. Preece, C., Verbruggen, E., Liu, L., Weedon, J. & Penuelas, J. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biol. Biochem. 131, 28–39 (2019).

    Article  CAS  Google Scholar 

  93. Ducatez, S., Sol, D., Sayol, F. & Lefebre, L. Behavioral plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).

    Article  Google Scholar 

  94. Kuchling, G. & Hofmeyr, M. D. Too hot to nest? In a hot summer the tortoise Chersina angulata can switch from nesting to facultative viviparity. Front. Ecol. Evol. 9, 788764 (2022).

    Article  Google Scholar 

  95. Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).

    Article  Google Scholar 

  96. Davidson, A. M., Jennions, M. D. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta‐analysis. Ecol. Lett. 14, 419–431 (2011).

    Article  Google Scholar 

  97. Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).

    Article  CAS  Google Scholar 

  98. Jørgensen, C., Ernande, B. & Fiksen, Ø. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol. Appl. 2, 356–370 (2009).

    Article  Google Scholar 

  99. Tenger-Trolander, A., Lu, W., Noyes, M. & Kronforst, M. R. Contemporary loss of migration in monarch butterflies. Proc. Natl Acad. Sci. USA 116, 14671–14676 (2019).

    Article  CAS  Google Scholar 

  100. Mitchell, N. J., Rodriguez, N., Kuchling, G., Arnall, S. G. & Kearney, M. R. Reptile embryos and climate change: modelling limits of viability to inform translocation decisions. Biol. Conserv. 204, 134–147 (2016).

    Article  Google Scholar 

  101. Sargent, R., Deere, N. J., McGowan, P. J. K., Bunnefeld, N. & Pfeifer, M. Room to roam for African lions Panthera leo: a review of the key drivers of lion habitat use and implications for conservation. Mammal. Rev. 52, 39–51 (2021).

    Article  Google Scholar 

  102. Salinas-Melgoza, A., Salinas-Melgoza, V. & Wright, T. F. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol. Conserv. 159, 303–312 (2013).

    Article  Google Scholar 

  103. Watters, J. V., Lema, S. C. & Nevitt, G. A. Phenotype management: a new approach to habitat restoration. Biol. Conserv. 112, 435–445 (2003).

    Article  Google Scholar 

  104. Wang, J. et al. Effects of heterogeneous environment after deforestation on plant phenotypic plasticity of three shrubs based on leaf traits and biomass allocation. Front. Ecol. Evol. 9, 608663 (2021).

    Article  Google Scholar 

  105. Turko, A. J. et al. Choosing source populations for conservation reintroductions: lessons from variation in thermal tolerance among populations of the imperilled redside dace. Can. J. Fish. Aquat. Sci. 78, 1347–1355 (2021).

  106. Larocque, S. M., Johnson, T. B. & Fisk, A. T. Survival and migration patterns of naturally and hatchery-reared Atlantic salmon (Salmo salar) smolts in a Lake Ontario tributary using acoustic telemetry. Freshw. Biol. 65, 835–848 (2020).

    Article  Google Scholar 

  107. Cook, M. T., Heppell, S. S. & Garcia, T. S. Invasive bullfrog larvae lack developmental plasticity to changing hydroperiod. J. Wildl. Manag. 77, 655–662 (2013).

    Article  Google Scholar 

  108. Haddaway, N. R., Mortimer, R. J. G., Christmas, M., Grahame, J. W. & Dunn, A. M. Morphological diversity and phenotypic plasticity in the threatened British white-clawed crayfish (Austropotamobius pallipes). Aquat. Conserv. 22, 220–231 (2012).

    Article  Google Scholar 

  109. Angeler, D. G. et al. in Advances in Ecological Research Vol. 60 (eds Bohan, D. A. & Dumbrell, A. J.) 1–24 (Academic, 2019).

  110. Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).

    Article  Google Scholar 

  111. Duncan, D. H. & Wintle, B. A. in Landscape Analysis and Visualisation (eds Pettit, C. et al.) 159–182 (Springer, 2008).

  112. Kokko, H. The stagnation paradox: the ever-improving but (more or less) stationary population fitness. Proc. R. Soc. B 288, 20212145 (2021).

    Article  Google Scholar 

  113. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 6 (Cambridge Univ. Press, 2007).

  114. Steeves, T. E., Johnson, J. A. & Hale, M. L. Maximising evolutionary potential in functional proxies for extinct species: a conservation genetic perspective on de-extinction. Funct. Ecol. 31, 1032–1040 (2017).

    Article  Google Scholar 

  115. Thompson, J. D. Phenotypic plasticity as a component of evolutionary change. Trends Ecol. Evol. 6, 246–249 (1991).

    Article  CAS  Google Scholar 

  116. Seddon, P. J., Griffiths, C. J., Soorae, P. S. & Armstrong, D. P. Reversing defaunation: restoring species in a changing world. Science 345, 406–412 (2014).

    Article  CAS  Google Scholar 

  117. Translocation of Living Organisms: IUCN Position Statement (IUCN, 1987).

  118. IUCN/SSC Guidelines for Reintroductions and Other Conservation Translocations Version 1.0. (IUCN Species Survival Commission, 2013).

  119. Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol. Appl. 4, 709–725 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on discussions at the 2020 Ecological Adaptation and Plasticity into Practice (EcolAPP) Workshop. We thank our colleagues C. Sgrò, A. Nicotra and R. Incoll for their participation in the workshop and additional helpful contributions. We thank S. Prasad and M. Lee-Abbott of ThinkPlace, Canberra, for their help transforming the workshop into a successful online event in the wake of COVID-19 lockdowns. The EcolAPP Workshop was funded by a Synthesis Group Grant from the Centre for Biodiversity Analysis (CBA) at The Australian National University (to R.J.F.). We also thank C. Stephens of the CBA for administrative support and encouragement of EMCR initiatives. J.M.D. was supported by an ARC Future Fellowship (FT190100015). We thank S. McMahon for helpful feedback on Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Donelson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donelson, J.M., Gaitan-Espitia, J.D., Hobday, A.J. et al. Putting plasticity into practice for effective conservation actions under climate change. Nat. Clim. Chang. 13, 632–647 (2023). https://doi.org/10.1038/s41558-023-01706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01706-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing