Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative H2 activation at a nickel(0)–olefin centre

Abstract

Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M–H bonds are generated either by oxidative addition of H2 to a metal centre or by deprotonation of a non-classical metal dihydrogen (M–H2) intermediate. Here we provide evidence for an alternative H2-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H2 molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni–H2 complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H2. The usefulness of this cooperative H2-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H2 activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (E)–(Z) isomerization and catalyst degradation by self-hydrogenation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for H2 activation in homogeneous catalysis.
Fig. 2: Cooperative activation of H2 by a nickel/olefin complex.
Fig. 3: Computational studies of H2 activation by a nickel/olefin complex.
Fig. 4: Catalytic semihydrogenation of diphenylacetylene.
Fig. 5: Computed catalytic cycles for semihydrogenation of diphenylacetylene and (Z)-stilbene isomerization, and computed pathway for the formation of complex 5.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are provided in the Article and its Supplementary Information and are also available from the corresponding author on reasonable request. Further experimental details, spectra of compounds, crystallographic details and additional discussions of computational details are provided in the Supplementary Information. Coordinates of all computed structures (energy minima and transitions states) are provided in the .xyz format. CCDC 2236144 (compound 5) contains the Supplementary Data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Source Data are provided with this paper.

References

  1. McGlynn, S. E. et al. Hydrogenation reactions of carbon on Earth: linking methane, margarine, and life. Am. Mineral. 105, 599–608 (2020).

    ADS  Google Scholar 

  2. Kubas, G. J. Chemistry of saturated molecules. Proc. Natl Acad. Sci. USA 104, 6901–6907 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kubas, G. J. Catalytic processes involving dihydrogen complexes and other sigma-bond complexes. Catal. Lett. 104, 79–101 (2005).

    CAS  Google Scholar 

  4. Crabtree, R. H. Dihydrogen complexation. Chem. Rev. 116, 8750–8769 (2016).

    CAS  PubMed  Google Scholar 

  5. Hale, D. J., Ferguson, M. J. & Turculet, L. (PSiP)Ni-catalyzed (E)-selective semihydrogenation of alkynes with molecular hydrogen. ACS Catal. 12, 146–155 (2021).

  6. Kubas, G. J. Activation of dihydrogen and coordination of molecular H2 on transition metals. J. Organomet. Chem. 751, 33–49 (2014).

    CAS  Google Scholar 

  7. Kubas, G. J. Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. J. Organomet. Chem. 635, 37–68 (2001).

    CAS  Google Scholar 

  8. Kubas, G. J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007).

    CAS  PubMed  Google Scholar 

  9. Vollmer, M. V., Xie, J. & Lu, C. C. Stable dihydrogen complexes of cobalt(–I) suggest an inverse trans-influence of Lewis acidic group 13 metalloligands. J. Am. Chem. Soc. 139, 6570–6573 (2017).

    CAS  PubMed  Google Scholar 

  10. Jessop, P. G. & Morris, R. H. Reactions of transition metal dihydrogen complexes. Coord. Chem. Rev. 121, 155–284 (1992).

    CAS  Google Scholar 

  11. Alig, L., Fritz, M. & Schneider, S. First-row transition metal (de)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 119, 2681–2751 (2019).

    CAS  PubMed  Google Scholar 

  12. Manar, K. K. & Ren, P. in Advances in Organometallic Chemistry Vol. 76 (Elsevier Inc., 2021).

  13. Karunananda, M. K. & Mankad, N. P. Cooperative strategies for catalytic hydrogenation of unsaturated hydrocarbons. ACS Catal. 7, 6110–6119 (2017).

    CAS  Google Scholar 

  14. Grotjahn, D. B. Bifunctional organometallic catalysts involving proton transfer or hydrogen bonding. Chem. Eur. J. 11, 7146–7153 (2005).

    CAS  PubMed  Google Scholar 

  15. Tiddens, M. R. & Moret, M.-E. Top. Organomet. Chem. 68, 25–69 (2021).

  16. Elsby, M. R. & Baker, R. T. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 49, 8933–8987 (2020).

    CAS  PubMed  Google Scholar 

  17. Milstein, D. Metal–ligand cooperation by aromatization–dearomatization as a tool in single bond activation. Philos. Trans. R. Soc. A 373, 20140189 (2015).

    ADS  Google Scholar 

  18. Van Der Vlugt, J. I. Cooperative catalysis with first-row late transition metals. Eur. J. Inorg. Chem. 2012, 363–375 (2012).

  19. Grützmacher, H. Cooperating ligands in catalysis. Angew. Chem. Int. Ed. 47, 1814–1818 (2008).

    Google Scholar 

  20. He, T. et al. Mechanism of heterolysis of H2 by an unsaturated d8 nickel center: via tetravalent nickel. J. Am. Chem. Soc. 132, 910–911 (2010).

    CAS  PubMed  Google Scholar 

  21. Schneider, S., Meiners, J. & Askevold, B. Cooperative aliphatic PNP amido pincer ligands-versatile building blocks for coordination chemistry and catalysis. Eur. J. Inorg. Chem. 2012, 412–429 (2012).

  22. Harman, W. H. & Peters, J. C. Reversible H2 addition across a nickel-borane unit as a promising strategy for catalysis. J. Am. Chem. Soc. 134, 5080–5082 (2012).

    CAS  PubMed  Google Scholar 

  23. Harman, W. H., Lin, T. P. & Peters, J. C. A d10 Ni–(H2) adduct as an intermediate in H–H oxidative addition across a Ni–B bond. Angew. Chem. Int. Ed. 53, 1081–1086 (2014).

    CAS  Google Scholar 

  24. Karunananda, M. K. & Mankad, N. P. E-selective semi-hydrogenation of alkynes by heterobimetallic catalysis. J. Am. Chem. Soc. 137, 14598–14601 (2015).

    CAS  PubMed  Google Scholar 

  25. Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J. & Wasserman, H. J. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2). J. Am. Chem. Soc. 106, 451–452 (1984).

    CAS  Google Scholar 

  26. Bianchini, C. et al. Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride η2-dihydrogen complex. A case of intramolecular reaction between η2-H2 and-σ-vinyl ligands. Organometallics 11, 138–145 (1992).

    CAS  Google Scholar 

  27. Thomas, A., Haake, M., Grevels, F. ‐W. & Bargon, J. In situ NMR investigations of photocatalyzed hydrogenations with parahydrogen in the presence of metal carbonyl compounds of group 6. Angew. Chem. Int. Ed. 33, 755–757 (1994).

    Google Scholar 

  28. Joshi, A. M., MacFarlane, K. S. & James, B. R. Kinetics and mechanism of H2-hydrogenation of styrene catalyzed by [RuCl(dppb) (μ-Cl)]2 (dppb = 1,4-bis(dipphenylphosphino)butane). Evidence for hydrogen transfer from a dinuclear molecular hydrogen species. J. Organomet. Chem. 488, 161–167 (1995). .

  29. Kirss, R. U., Eisenschmid, T. C. & Eisenberg, R. Para-hydrogen induced polarization in hydrogenation reactions catalyzed by ruthenium-phosphine complexes. J. Am. Chem. Soc. 110, 8564–8566 (1988).

    CAS  Google Scholar 

  30. Jia, G., Ng, W. S. & Lau, C. P. Dihydrogen complex formation and C–C bond cleavage from protonation of Cp*RuH(diene) complexes. Organometallics 17, 4538–4540 (1998).

    CAS  Google Scholar 

  31. Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes (Springer, 2001); https://doi.org/10.1007/b113929

  32. Vigalok, A., Kraatz, H., Konstantinovsky, L. & Milstein, D. Evidence for direct trans insertion in a hydrido–olefin rhodium complex—free nitrogen as a trap in a migratory insertion process. Chem. Eur. J 3, 253–260 (1997).

    CAS  PubMed  Google Scholar 

  33. Polukeev, A. V. & Wendt, O. F. Iridium pincer complexes with an olefin backbone. Organometallics 34, 4262–4271 (2015).

    CAS  Google Scholar 

  34. Polukeev, A. V. & Wendt, O. F. Iridium complexes with aliphatic, non-innocent pincer ligands. J. Organomet. Chem. 867, 33–50 (2018).

    CAS  Google Scholar 

  35. Verhoeven, D. G. A. & Moret, M. E. Metal-ligand cooperation at tethered π-ligands. Dalton Trans. 45, 15762–15778 (2016).

    CAS  PubMed  Google Scholar 

  36. Comanescu, C. C., Vyushkova, M. & Iluc, V. M. Palladium carbene complexes as persistent radicals. Chem. Sci. 6, 4570–4579 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrett, B. J. & Iluc, V. M. An adaptable chelating diphosphine ligand for the stabilization of palladium and platinum carbenes. Organometallics 36, 730–741 (2017).

    CAS  Google Scholar 

  38. Barrett, B. J. & Iluc, V. M. Group 10 metal complexes supported by pincer ligands with an olefinic backbone. Organometallics 33, 2565–2574 (2014).

    CAS  Google Scholar 

  39. Barrett, B. J. & Iluc, V. M. Coordination of a hemilabile pincer ligand with an olefinic backbone to mid-to-late transition metals. Inorg. Chem. 53, 7248–7259 (2014).

    CAS  PubMed  Google Scholar 

  40. Breitenfeld, J., Vechorkin, O., Corminboeuf, C., Scopelliti, R. & Hu, X. Why are (NN2)Ni pincer complexes active for alkyl–alkyl coupling: β-H elimination is kinetically accessible but thermodynamically uphill. Organometallics 29, 3686–3689 (2010).

    CAS  Google Scholar 

  41. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals (John Wiley & Sons, 2014); https://doi.org/10.1002/9781118788301

  42. Michaliszyn, K., Smirnova, E. S., Bucci, A., Martin‐Diaconescu, V. & Lloret Fillol, J. Well‐defined nickel P3C complexes as hydrogenation catalysts of N‐heteroarenes under mild conditions. ChemCatChem 14, e202200039 (2022).

    CAS  Google Scholar 

  43. Guihaumé, J., Halbert, S., Eisenstein, O. & Perutz, R. N. Hydrofluoroarylation of alkynes with Ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer, an alternative to oxidative addition. Organometallics 31, 1300–1314 (2012).

    Google Scholar 

  44. Perutz, R. N., Sabo-Etienne, S. & Weller, A. S. Metathesis by partner interchange in σ-bond ligands: expanding applications of the σ-CAM mechanism. Angew. Chem. Int. Ed. 61, e202111462 (2022).

    ADS  CAS  Google Scholar 

  45. Tang, S., Eisenstein, O., Nakao, Y. & Sakaki, S. Aromatic C–H σ-bond activation by Ni0, Pd0 and Pt0 alkene complexes: concerted oxidative addition to metal vs ligand-to-ligand H transfer mechanism. Organometallics 36, 2761–2771 (2017).

    CAS  Google Scholar 

  46. Perutz, R. N. & Sabo-Etienne, S. The σ-CAM mechanism: σ complexes as the basis of σ-bond metathesis at late-transition-metal centers. Angew. Chem. Int. Ed. 46, 2578–2592 (2007).

    CAS  Google Scholar 

  47. Murugesan, K. et al. Nickel-catalyzed stereodivergent synthesis of E- and Z-alkenes by hydrogenation of alkynes. ChemSusChem 12, 3363–3369 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramirez, B. L. & Lu, C. C. Rare-earth supported nickel catalysts for alkyne semihydrogenation: chemo- and regioselectivity impacted by the Lewis acidity and size of the support. J. Am. Chem. Soc. 142, 5396–5407 (2020).

    CAS  PubMed  Google Scholar 

  49. Thiel, N. O., Kaewmee, B., Tran Ngoc, T. & Teichert, J. F. A simple nickel catalyst enabling an E-selective alkyne semihydrogenation. Chem. Eur. J. 26, 1597–1603 (2020).

    CAS  PubMed  Google Scholar 

  50. Swamy, K. C. K., Reddy, A. S., Sandeep, K. & Kalyani, A. Advances in chemoselective and/or stereoselective semihydrogenation of alkynes. Tetrahedron Lett. 59, 419–429 (2018).

    CAS  Google Scholar 

  51. Gregori, B. J., Schmotz, M.-O. W. S. & Jacobi von Wangelin, A. Stereoselective semi‐hydrogenations of alkynes by first‐row (3d) transition metal catalysts. ChemCatChem 14, e202200886 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sansores‐Paredes, M. L. G., Voort, S., Lutz, M. & Moret, M. Divergent reactivity of an isolable nickelacyclobutane. Angew. Chem. Int. Ed. 60, 26518–26522 (2021).

    Google Scholar 

  53. Gullett, K. L. et al. Dihydrogen and Dinitrogen Complexes of Cobalt and Nickel. Comprehensive Coordination Chemistry III Vol. 6 (Elsevier, 2021).

  54. Morris, R. H. Dihydrogen, dihydride and in between: NMR and structural properties of iron group complexes. Coord. Chem. Rev. 252, 2381–2394 (2008).

    CAS  Google Scholar 

  55. Luther, T. A. & Heinekey, D. M. Synthesis, characterization, and reactivity of dicationic dihydrogen complexes of osmium and ruthenium. Inorg. Chem. 37, 127–132 (1998).

    CAS  PubMed  Google Scholar 

  56. Cammarota, R. C. & Lu, C. C. Tuning nickel with Lewis acidic group 13 metalloligands for catalytic olefin hydrogenation. J. Am. Chem. Soc. 137, 12486–12489 (2015).

    CAS  PubMed  Google Scholar 

  57. Cammarota, R. C. et al. Thermodynamic and kinetic studies of H2 and N2 binding to bimetallic nickel-group 13 complexes and neutron structure of a Ni(η2-H2) adduct. Chem. Sci. 10, 7029–7042 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Connor, B. A., Rittle, J., Vandervelde, D. & Peters, J. C. A Ni0(η2-(Si–H))(η2-H2) complex that mediates facile H atom exchange between two σ-ligands. Organometallics 35, 686–690 (2016).

    CAS  Google Scholar 

  59. Tsay, C. & Peters, J. C. Thermally stable N2 and H2 adducts of cationic nickel(II). Chem. Sci. 3, 1313–1318 (2012).

    CAS  Google Scholar 

  60. Connelly, S. J., Zimmerman, A. C., Kaminsky, W. & Heinekey, D. M. Synthesis, structure, and reactivity of a nickel dihydrogen complex. Chem. Eur. J. 18, 15932–15934 (2012).

    CAS  PubMed  Google Scholar 

  61. Robinson, S. J. C. & Heinekey, D. M. Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chem. Commun. 53, 669–676 (2017).

    CAS  Google Scholar 

  62. Prat, J. R., Cammarota, R. C., Graziano, B. J., Moore, J. T. & Lu, C. C. Toggling the Z-type interaction off-on in nickel-boron dihydrogen and anionic hydride complexes. Chem. Commun. 58, 8798–8801 (2022).

    CAS  Google Scholar 

  63. Cammarota, R. C. et al. A bimetallic nickel–gallium complex catalyzes CO2 hydrogenation via the intermediacy of an anionic d10 nickel hydride. J. Am. Chem. Soc. 139, 14244–14250 (2017).

    CAS  PubMed  Google Scholar 

  64. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed  Google Scholar 

  65. Vastine, B. A. & Hall, M. B. Carbon–hydrogen bond activation: two, three, or more mechanisms? J. Am. Chem. Soc. 129, 12068–12069 (2007).

    CAS  PubMed  Google Scholar 

  66. Skipper, C. V. J., Hoang, T. K. A., Antonelli, D. M. & Kaltsoyannis, N. Transition metal hydrazide-based hydrogen-storage materials: the first atoms-in-molecules analysis of the Kubas interaction. Chem. Eur. J. 18, 1750–1760 (2012).

    CAS  PubMed  Google Scholar 

  67. Sparkes, H. A., Chaplin, A. B., Weller, A. S. & Howard, J. A. K. Bond catastrophes in rhodium complexes: experimental charge-density studies of [Rh(C7H8)(PtBu3)Cl] and [Rh(C7H8)(PCy3)Cl]. Acta Crystallogr. B 66, 503–514 (2010).

    ADS  CAS  PubMed  Google Scholar 

  68. Bair, J. S. et al. Linear-selective hydroarylation of unactivated terminal and internal olefins with trifluoromethyl-substituted arenes. J. Am. Chem. Soc. 136, 13098–13101 (2014).

    CAS  PubMed  Google Scholar 

  69. Chen, M. & Montgomery, J. Nickel-catalyzed intermolecular enantioselective heteroaromatic C–H alkylation. ACS Catal. 12, 11015–11023 (2022).

  70. Saper, N. I. et al. Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions. Nat. Chem. 12, 276–283 (2020).

    CAS  PubMed  Google Scholar 

  71. Orsino, A. F., Gutiérrez Del Campo, M., Lutz, M. & Moret, M. E. Enhanced catalytic activity of nickel complexes of an adaptive diphosphine-benzophenone ligand in alkyne cyclotrimerization. ACS Catal. 9, 2458–2481 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lesueur, W., Solari, E., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. A bidentate bisphosphine functioning in intramolecular aliphatic metalation and as an NMR spectroscopic probe for the metal coordination environment. Inorg. Chem. 36, 3354–3362 (1997).

    CAS  PubMed  Google Scholar 

  73. Ryu, H. et al. Pitfalls in computational modeling of chemical reactions and how to avoid them. Organometallics 37, 3228–3239 (2018).

    CAS  Google Scholar 

  74. Basics on Arrayed-NMR and Data Analysis (Resources, accessed January 2023); https://resources.mestrelab.com/data-analysis/

  75. Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. EVAL15: a diffraction data integration method based on ab initio predicted profiles. J. Appl. Crystallogr. 43, 70–82 (2010).

    ADS  CAS  Google Scholar 

  76. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    ADS  Google Scholar 

  78. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    ADS  Google Scholar 

  79. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian, Inc., 2016).

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 715060). The X-ray diffractometer has been financed by the Netherlands Organization for Scientific Research (NWO). This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative using grants no. EINF-1254 and EINF-3520. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank P. M. Pérez-García for his assistance with the analysis of the catalysis results and helpful discussions. We thank G. van Koten, W. Hill Harman, D. L. J. Broere and A. A. Thevenon-Kozub for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.-E.M. initiated and supervised the project. M.L.G.S-P. performed the experiments and DFT calculations. M.L. oversaw the acquisition, solving and interpretation of X-ray diffraction of the crystal structure. M.L.G.S-P. and M.-E.M. wrote the manuscript with the contribution of M.L. All authors approved the final manuscript.

Corresponding author

Correspondence to Marc-Etienne Moret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Alison Edwards, Helene Gerard and Robin Perutz for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details, Sections 1–5, Figs. 1–82 and Tables 1–4.

Supplementary Data 1

Coordinates of all computed structures in.xyz format.

Supplementary Data 2

Crystallographic data for compound 5 (CCDC no. 2236144).

Supplementary Data 3

Source numerical data from NMR integration for Supplementary Figs. 20, 21, 26, 29, 30.

Source data

Source Data Fig. 4

Numerical data from NMR integration for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansores-Paredes, M.L.G., Lutz, M. & Moret, ME. Cooperative H2 activation at a nickel(0)–olefin centre. Nat. Chem. 16, 417–425 (2024). https://doi.org/10.1038/s41557-023-01380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01380-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing