Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of druggable regulators of cell secretion via a kinome-wide screen and high-throughput immunomagnetic cell sorting

Abstract

The identification of genetic regulators of cell secretions is challenging because it requires the sorting of a large number of cells according to their secretion patterns. Here we report the development and applicability of a high-throughput microfluidic method for the analysis of the secretion levels of large populations of immune cells. The method is linked with a kinome-wide loss-of-function CRISPR screen, immunomagnetically sorting the cells according to their secretion levels, and the sequencing of their genomes to identify key genetic modifiers of cell secretion. We used the method, which we validated against flow cytometry for cytokines secreted from primary mouse CD4+ (cluster of differentiation 4-positive) T cells, to discover a subgroup of highly co-expressed kinase-coding genes that regulate interferon-gamma secretion by these cells. We validated the function of the kinases identified using RNA interference, CRISPR knockouts and kinase inhibitors and confirmed the druggability of selected kinases via the administration of a kinase inhibitor in an animal model of colitis. The technique may facilitate the discovery of regulatory mechanisms for immune-cell activation and of therapeutic targets for autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of the druggable modulators of cell secretion via a high-throughput single-cell secretion assay.
Fig. 2: Validation of SECRE.
Fig. 3: SECRE combined with a CRISPR screen identifies regulators of IFNγ secretion.
Fig. 4: Validation of the identified hits.
Fig. 5: Validation of IFNγ inhibition in a DSS-induced colitis mouse model.

Similar content being viewed by others

Data availability

The sgRNA-sequencing data are available from figshare via the identifier https://doi.org/10.6084/m9.figshare.24151401. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Satija, R. & Shalek, A. K. Heterogeneity in immune responses: from populations to single cells. Trends Immunol. 35, 219–229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma, C. et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17, 738–743 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Behar, M., Barken, D., Werner, S. L. & Hoffmann, A. The dynamics of signaling as a pharmacological target. Cell 155, 448–461 (2013).

    CAS  PubMed  Google Scholar 

  5. Li, Y. et al. Microfluidics cell loading-dock system: ordered cellular array for dynamic lymphocyte-communication study. Adv. Biosyst. 1, e1700085 (2017).

    PubMed  Google Scholar 

  6. Xue, Q. et al. Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci. Signal. 8, ra59 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Lovelace, P. & Maecker, H. T. Multiparameter intracellular cytokine staining. Methods Mol. Biol. 699, 165–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Czerkinsky, C. C., Nilsson, L. A., Nygren, H., Ouchterlony, O. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65, 109–121 (1983).

    CAS  PubMed  Google Scholar 

  9. Ahlborg, N. & Axelsson, B. Dual- and triple-color fluorospot. Methods Mol. Biol. 792, 77–85 (2012).

    CAS  PubMed  Google Scholar 

  10. Norman, M. et al. Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. Nat. Biomed. Eng. 4, 1180–1187 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Love, J. C., Ronan, J. L., Grotenbreg, G. M., van der Veen, A. G. & Ploegh, H. L. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24, 703–707 (2006).

    CAS  PubMed  Google Scholar 

  13. Jin, A. et al. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat. Med. 15, 1088–1092 (2009).

    CAS  PubMed  Google Scholar 

  14. Zhou, Y. et al. Evaluation of single-cell cytokine secretion and cell–cell interactions with a hierarchical loading microwell chip. Cell Rep. 31, 107574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, Y. et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc. Natl Acad. Sci. USA 112, E607–E615 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Z. et al. Multiplexed, sequential secretion analysis of the same single cells reveals distinct effector response dynamics dependent on the initial basal state. Adv. Sci. 6, 1801361 (2019).

    Google Scholar 

  17. Turcanu, V. & Williams, N. A. Cell identification and isolation on the basis of cytokine secretion: a novel tool for investigating immune responses. Nat. Med. 7, 373–376 (2001).

    CAS  PubMed  Google Scholar 

  18. Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017).

    CAS  PubMed  Google Scholar 

  19. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S., de Rutte, J., Dimatteo, R., Koo, D. & Di Carlo, D. Scalable fabrication and use of 3D structured microparticles spatially functionalized with biomolecules. ACS Nano 16, 38–49 (2022).

    CAS  PubMed  Google Scholar 

  21. Segaliny, A. I. et al. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip 18, 3733–3749 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Binek, A. et al. Flow cytometry has a significant impact on the cellular metabolome. J. Proteome Res. 18, 169–181 (2019).

    CAS  PubMed  Google Scholar 

  23. Torres, A. J., Hill, A. S. & Love, J. C. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding. Anal. Chem. 86, 11562–11569 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    CAS  PubMed  Google Scholar 

  25. Le, K. et al. A novel mammalian cell line development platform utilizing nanofluidics and optoelectro positioning technology. Biotechnol. Prog. 34, 1438–1446 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu, Z. et al. Highly selective cleavage of cytokines and chemokines by the human mast cell chymase and neutrophil cathepsin G. J. Immunol. 198, 1474–1483 (2017).

    CAS  PubMed  Google Scholar 

  27. Zhao, W. et al. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6, 524–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Manz, R., Assenmacher, M., Pflüger, E., Miltenyi, S. & Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl Acad. Sci. USA 92, 1921–1925 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kida, A. et al. Cell surface-fluorescence immunosorbent assay for real-time detection of hybridomas with efficient antibody secretion at the single-cell level. Anal. Chem. 85, 1753–1759 (2013).

    CAS  PubMed  Google Scholar 

  30. Brosterhus, H. et al. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol. 29, 4053–4059 (1999).

    CAS  PubMed  Google Scholar 

  31. Armbrecht, L. et al. Quantification of protein secretion from circulating tumor cells in microfluidic chambers. Adv. Sci. 7, 1903237 (2020).

    CAS  Google Scholar 

  32. van Neel, T. L., Berry, S. B., Berthier, E. & Theberge, A. B. Localized cell-surface sampling of a secreted factor using cell-targeting beads. Anal. Chem. 92, 13634–13640 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Ferguson, F. M. & Gray, N. S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17, 353–377 (2018).

    CAS  PubMed  Google Scholar 

  34. Poudineh, M. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 12, 274–281 (2017).

    CAS  PubMed  Google Scholar 

  35. Labib, M. et al. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nat. Biomed. Eng. 5, 41–52 (2021).

    CAS  PubMed  Google Scholar 

  36. Labib, M. et al. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat. Chem. 10, 489–495 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Langer, V. et al. IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin-directed vascular barrier disruption. J. Clin. Invest. 129, 4691–4707 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Takashima, S. et al. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci. Immunol. 4, eaay8556 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, Q. et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl Acad. Sci. USA 109, 1607–1612 (2012).

    CAS  PubMed  Google Scholar 

  41. Imam, T., Park, S., Kaplan, M. H. & Olson, M. R. Effector T helper cell subsets in inflammatory bowel diseases. Front. Immunol. 9, 1212 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    CAS  PubMed  Google Scholar 

  43. Haep, L. et al. Interferon gamma counteracts the angiogenic switch and induces vascular permeability in dextran sulfate sodium colitis in mice. Inflamm. Bowel Dis. 21, 2360–2371 (2015).

    PubMed  Google Scholar 

  44. Gardet, A. et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J. Immunol. 185, 5577–5585 (2010).

    CAS  PubMed  Google Scholar 

  45. Wang, F. et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409–419 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Colic, M. et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 11, 52 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Mair, B. et al. High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat. Biomed. Eng. 3, 796–805 (2019).

    CAS  PubMed  Google Scholar 

  48. Fan, F. et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108 (2016).

    PubMed  Google Scholar 

  49. Elkins, J. M. et al. Comprehensive characterization of the published kinase inhibitor set. Nat. Biotechnol. 34, 95–103 (2016).

    CAS  PubMed  Google Scholar 

  50. Asshoff, M. et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood 129, 1823–1830 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rix, U. et al. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia 24, 44–50 (2010).

    CAS  PubMed  Google Scholar 

  52. Yamamoto, N., Honma, M. & Suzuki, H. Off-target serine/threonine kinase 10 inhibition by erlotinib enhances lymphocytic activity leading to severe skin disorders. Mol. Pharmacol. 80, 466–475 (2011).

    CAS  PubMed  Google Scholar 

  53. Egger, B. et al. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion 62, 240–248 (2000).

    CAS  PubMed  Google Scholar 

  54. Mashimo, H., Wu, D. C., Podolsky, D. K. & Fishman, M. C. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274, 262–265 (1996).

    CAS  PubMed  Google Scholar 

  55. Ito, R. et al. Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin. Exp. Immunol. 146, 330–338 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chiba, H., Kojima, T., Osanai, M. & Sawada, N. The significance of interferon-gamma-triggered internalization of tight-junction proteins in inflammatory bowel disease. Sci. STKE 2006, pe1 (2006).

    PubMed  Google Scholar 

  57. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e1322 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e1123 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Henriksson, J. et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 176, 882–896.e818 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by the Canadian Institutes of Health Research (grant number FDN-148415), the Natural Sciences and Engineering Research Council of Canada (grant number 2016-06090), the Province of Ontario through the Ministry of Research, Innovation and Science (grant number RE05-009) and the National Cancer Institute of the National Institutes of Health (grant number 1R33CA204574). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the other funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

M.L., S.A., E.H.S. and S.O.K. conceived and designed the experiments; M.L., Z.W., Y.K., S.L. and H.Y. performed the experiments and analysed the data. A.A. performed the CRISPR KO experiments. P-Y.L. cultured and maintained the cells. M.L., Z.W., S.A., E.H.S. and S.O.K. contributed to the preparation and editing of the manuscript.

Corresponding author

Correspondence to Shana O. Kelley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Main Supplementary Information

Supplementary methods, table and figures.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labib, M., Wang, Z., Kim, Y. et al. Identification of druggable regulators of cell secretion via a kinome-wide screen and high-throughput immunomagnetic cell sorting. Nat. Biomed. Eng 8, 263–277 (2024). https://doi.org/10.1038/s41551-023-01135-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01135-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing